首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   27篇
  国内免费   1篇
  2023年   11篇
  2022年   22篇
  2021年   38篇
  2020年   22篇
  2019年   26篇
  2018年   28篇
  2017年   18篇
  2016年   17篇
  2015年   18篇
  2014年   34篇
  2013年   31篇
  2012年   24篇
  2011年   29篇
  2010年   13篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有335条查询结果,搜索用时 15 毫秒
301.
《Cell reports》2023,42(5):112530
  1. Download : Download high-res image (320KB)
  2. Download : Download full-size image
  相似文献   
302.
This study investigated age-associated changes to protein synthesis and degradation pathways in the quadriceps muscles of male C57BL/6J mice at 5 ages, between 4 and 24 months (m). Sarcopenia was evident by 18 m and was accompanied by hyper-phosphorylation of S6K1, indicating increased mTORC1 signaling. Proteasomal and autophagosomal degradation pathways were also impacted by aging. In the 1% NP40 insoluble protein fraction, the abundance of MuRF1 increased at 24 m, while p62 increased at 15 m, and remained elevated at older ages. In addition, we investigated how protein synthesis and degradation pathways are modulated by fasting in young (4 m) and old (24 m) muscles, and showed that old mice respond to fasting less robustly compared with young. Overnight fasting for 16 h caused de-phosphorylation of AKT and molecules downstream of mTORC1 (S6K1, rpS6 and 4E-BP1) in young, but not old muscles. A longer time of fasting (24 h) was required to reduce phosphorylation of these molecules in old mice. Induction of MuRF1 and Fbxo32 mRNA was also more robust in young compared with old muscles following fasting for 16 h. In addition, a 16 h fast reduced ULK1 phosphorylation at the mTORC1 specific site Ser757 only in young muscles. The striking accumulation of insoluble p62 protein in muscles of all old male mice (fed or fasted), suggests age-related dysregulation of autophagy and protein aggregation. These data provide an insight into the mechanisms of metabolic responses that affect protein homeostasis in old skeletal muscles, with applications to design of clinical interventions that target sarcopenia.  相似文献   
303.
304.
Autophagy is an evolutionarily conserved pathway that is required for cellular homeostasis, growth and survival. In a recent study, Scotto-Rosato et al. demonstrate that TRPML1-mediated calcium release promotes autophagosome biogenesis by activating the CaMKKβ/VPS34 pathway, providing a new insight into the pathophysiological role of TRPML1 in human diseases.  相似文献   
305.
306.
307.
308.
309.
《Cell reports》2020,30(8):2729-2742.e4
  1. Download : Download high-res image (101KB)
  2. Download : Download full-size image
  相似文献   
310.
B lymphocytes are an important component of the adaptive and innate immune system because of their ability to secrete antibodies and to present antigens to T cells, which is critical for immune responses to many pathogens. Abnormal B cell function is the cause of diseases including autoimmune, paraneoplastic, and immunodeficiency disorders. The development, survival, and function of B cells depend on signaling through the B cell receptor (BCR) and costimulatory receptors. One of the signaling pathways induced by antigen binding to the BCR is store-operated Ca2+ entry (SOCE), which depends on the Ca2+ channel ORAI1 and its activators stromal interaction molecule (STIM) 1 and 2. A recent study by Berry et al. [1] reports that B cells lacking STIM1 and STIM2 fail to survive and proliferate because abolished SOCE results in impaired expression of two key anti-apoptotic genes and blunted activation of mTORC1 and c-Myc signaling. The associated Ca2+ regulated checkpoints of B cell survival and proliferation can be bypassed, at least partially, by costimulation through CD40 or TLR9. This study provides important new insights on how SOCE controls B cell function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号