首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   27篇
  国内免费   1篇
  335篇
  2023年   11篇
  2022年   22篇
  2021年   38篇
  2020年   22篇
  2019年   26篇
  2018年   28篇
  2017年   18篇
  2016年   17篇
  2015年   18篇
  2014年   34篇
  2013年   31篇
  2012年   24篇
  2011年   29篇
  2010年   13篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有335条查询结果,搜索用时 0 毫秒
161.
162.
The mechanistic target of rapamycin (mTOR) signaling pathway regulates many metabolic and physiological processes in different organs or tissues. Dysregulation of mTOR signaling has been implicated in many human diseases including obesity, diabetes, cancer, fatty liver diseases, and neuronal disorders. Here we review recent progress in understanding how mTORC1 (mTOR complex 1) signaling regulates lipid metabolism in the liver.  相似文献   
163.
The mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of physiological adaptations in response to changes in nutrient supply. Major downstream targets of mTORC1 signalling are the mRNA translation regulators p70 ribosomal protein S6 kinase 1 (S6K1p70) and the 4E‐binding proteins (4E‐BPs). However, little is known about vertebrate mRNAs that are specifically controlled by mTORC1 signalling and are engaged in regulating mTORC1‐associated physiology. Here, we show that translation of the CCAAT/enhancer binding protein beta (C/EBPβ) mRNA into the C/EBPβ‐LIP isoform is suppressed in response to mTORC1 inhibition either through pharmacological treatment or through calorie restriction. Our data indicate that the function of 4E‐BPs is required for suppression of LIP. Intriguingly, mice lacking the cis‐regulatory upstream open reading frame (uORF) in the C/EBPβ‐mRNA, which is required for mTORC1‐stimulated translation into C/EBPβ‐LIP, display an improved metabolic phenotype with features also found under calorie restriction. Thus, our data suggest that translational adjustment of C/EBPβ‐isoform expression is one of the key processes that direct metabolic adaptation in response to changes in mTORC1 activity.  相似文献   
164.
The mammalian target of rapamycin (mTOR) is a central regulator of cell growth. mTOR exists in two functional complexes, mTORC1 and mTORC2. mTORC1 is rapamycin-sensitive, and results in phosphorylation of 4E-BP1 and S6K1. mTORC2 is proposed to regulate Akt Ser473 phosphorylation and be rapamycin-insensitive. mTORC2 consists of mTOR, mLST8, sin1, Protor/PRR5, and the rapamycin insensitive companion of mTOR (rictor). Here, we show that rapamycin regulates the phosphorylation of rictor. Rapamycin-mediated rictor dephosphorylation is time and concentration dependent, and occurs at physiologically relevant rapamycin concentrations. siRNA knockdown of mTOR also leads to rictor dephosphorylation, suggesting that rictor phosphorylation is mediated by mTOR or one of its downstream targets. Rictor phosphorylation induced by serum, insulin and insulin-like growth factor is blocked by rapamycin. Rictor dephosphorylation is not associated with dephosphorylation of Akt Ser473. Further work is needed to better characterize the mechanism of rictor regulation and its role in rapamycin-mediated growth inhibition.  相似文献   
165.
p70 ribosomal S6 kinase (S6K1), a major substrate of the mammalian target of rapamycin (mTOR) kinase, regulates diverse cellular processes including protein synthesis, cell growth, and survival. Although it is well known that the activity of S6K1 is tightly coupled to its phosphorylation status, the regulation of S6K1 activity by other post-translational modifications such as acetylation has not been well understood. Here we show that the acetylation of the C-terminal region (CTR) of S6K1 blocks mTORC1-dependent Thr-389 phosphorylation, an essential phosphorylation site for S6K1 activity. The acetylation of the CTR of S6K1 is inhibited by the class III histone deacetylases, SIRT1 and SIRT2. An S6K1 mutant lacking acetylation sites in its CTR shows enhanced Thr-389 phosphorylation and kinase activity, whereas the acetylation-mimetic S6K1 mutant exhibits decreased Thr-389 phosphorylation and kinase activity. Interestingly, relative to the acetylation-mimetic S6K1 mutant, the acetylation-defective mutant displays higher affinity toward Raptor, an essential scaffolding component of mTORC1 that recruits mTORC1 substrates. These observations indicate that sirtuin-mediated regulation of S6K1 acetylation is an additional important regulatory modification that impinges on the mechanisms underlying mTORC1-dependent S6K1 activation.  相似文献   
166.
Lycopene, one of the most potent anti‐oxidants, has been reported to exhibit potent anti‐proliferative properties in a wide range of cancer cells through modulation of the cell cycle and apoptosis. Forkhead box O3 (FOXO3a) plays a pivotal role in modulating the expression of genes involved in cell death. Herein, we investigated the role of FOXO3a signaling in the anti‐cancer effects of lycopene. Results showed that lycopene pretreatment attenuated UVB‐induced cell hyper‐proliferation and promoted apoptosis, accompanied by decreased cyclin‐dependent kinase 2 (CDK2) and CDK4 complex in both human keratinocytes and SKH‐1 hairless mice. FOXO3a is phosphorylated in response to UVB irradiation and sequestered in the cytoplasm, while lycopene pretreatment rescued this sensitization. Gene ablation of FOXO3a attenuated lycopene‐induced decrease in cell hyper‐proliferation, CDK2, and CDK4 complex, indicating a critical role of FOXO3a in the lycopene‐induced anti‐proliferative effect of keratinocytes during UVB irradiation. Transfection with FOXO3a siRNA inhibited the lycopene‐induced increase in cell apoptosis, BAX and cleaved PARP expression. Moreover, loss of AKT induced further accelerated lycopene‐induced FOXO3a dephosphorylation, while loss of mechanistic target of rapamycin complex 2 (mTORC2) by transfection with RICTOR siRNA induced levels of AKT phosphorylation comparable to those obtained with lycopene. In contrast, overexpression of AKT or mTORC2 decreased the effects of lycopene on the expression of FOXO3a as well as AKT phosphorylation, suggesting that lycopene depends on the negative modulation of mTORC2/AKT signaling. Taken together, our findings demonstrate that the mTORC2/AKT/FOXO3a axis plays a critical role in the anti‐proliferative and pro‐apoptotic effects of lycopene in UVB‐induced photocarcinogenesis. J. Cell. Biochem. 119: 366–377, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   
167.
168.
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR.  相似文献   
169.
Δ9-Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoids inhibit tumor growth in animal models of cancer. This effect relies, at least in part, on the up-regulation of several endoplasmic reticulum stress-related proteins including the pseudokinase tribbles homologue-3 (TRIB3), which leads in turn to the inhibition of the AKT/mTORC1 axis and the subsequent stimulation of autophagy-mediated apoptosis in tumor cells. Here, we took advantage of the use of cells derived from Trib3-deficient mice to investigate the precise mechanisms by which TRIB3 regulates the anti-cancer action of THC. Our data show that RasV12/E1A-transformed embryonic fibroblasts derived from Trib3-deficient mice are resistant to THC-induced cell death. We also show that genetic inactivation of this protein abolishes the ability of THC to inhibit the phosphorylation of AKT and several of its downstream targets, including those involved in the regulation of the AKT/mammalian target of rapamycin complex 1 (mTORC1) axis. Our data support the idea that THC-induced TRIB3 up-regulation inhibits AKT phosphorylation by regulating the accessibility of AKT to its upstream activatory kinase (the mammalian target of rapamycin complex 2; mTORC2). Finally, we found that tumors generated by inoculation of Trib3-deficient cells in nude mice are resistant to THC anticancer action. Altogether, the observations presented here strongly support that TRIB3 plays a crucial role on THC anti-neoplastic activity. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.  相似文献   
170.
The 40S ribosomal S6 kinase 1 (S6K1) is a conserved serine/threonine protein kinase that belongs to the AGC family of protein kinases, which also includes Akt and many others. S6K1 is the principal kinase effector downstream of the mammalian target of rapamycin complex 1 (mTORC1). S6K1 is sensitive to a wide range of signaling inputs, including growth factors, amino acids, energy levels and hypoxia. S6K1 relays these signals to regulate a growing list of substrates and interacting proteins in control of oncogenic processes, such as cell growth and proliferation, cell survival and apoptosis and cell migration and invasion. Several lines of evidence suggest an important role for S6K1 in estrogen receptor (ER)-positive breast cancer. S6K1 directly phosphorylates and activates ERα. Furthermore, S6K1 expression is estrogenically regulated. Therefore, hyperactivation of mTORC1/S6K1 signaling may be closely related to ER-positive status in breast cancer and may be utilized as a marker for prognosis and a therapeutic target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号