首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3874篇
  免费   117篇
  国内免费   169篇
  2024年   4篇
  2023年   59篇
  2022年   76篇
  2021年   75篇
  2020年   71篇
  2019年   81篇
  2018年   49篇
  2017年   47篇
  2016年   58篇
  2015年   89篇
  2014年   209篇
  2013年   258篇
  2012年   195篇
  2011年   156篇
  2010年   122篇
  2009年   155篇
  2008年   189篇
  2007年   152篇
  2006年   163篇
  2005年   141篇
  2004年   146篇
  2003年   140篇
  2002年   136篇
  2001年   99篇
  2000年   87篇
  1999年   73篇
  1998年   101篇
  1997年   77篇
  1996年   86篇
  1995年   98篇
  1994年   98篇
  1993年   79篇
  1992年   59篇
  1991年   71篇
  1990年   72篇
  1989年   43篇
  1988年   44篇
  1987年   43篇
  1986年   23篇
  1985年   49篇
  1984年   41篇
  1983年   28篇
  1982年   41篇
  1981年   21篇
  1980年   19篇
  1979年   13篇
  1978年   6篇
  1977年   8篇
  1976年   5篇
  1975年   2篇
排序方式: 共有4160条查询结果,搜索用时 15 毫秒
191.
In both eukaryotic and prokaryotic cells, it has been recently established that mRNAs encoding secreted and membrane proteins can be localized to the surface of membranes via both translation-dependent and RNA element-mediated mechanisms. Previously, we showed that the placental alkaline phosphatase (ALPP) mRNA can be localized to the ER membrane independently of translation, and this localization is mediated by p180, an mRNA receptor present in the ER. In this article, we aimed to identify the cis-acting RNA element in ALPP. Using chimera constructs containing fragments of the ALPP mRNA, we demonstrate that the ER-localizing RNA element is present within the 3′ end of the open reading frame and codes for a transmembrane domain. In addition, we show that this region requires p180 for efficient ER anchoring. Taken together, we provide the first insight into the nature of cis-acting ER-localizing RNA elements responsible for localizing mRNAs on the ER in mammalian cells.  相似文献   
192.
193.
Alcoholism has complex etiology and there is evidence for both genetic and environmental factors in its pathophysiology. Chronic, long-term alcohol abuse and alcohol dependence are associated with neuronal loss with the prefrontal cortex being particularly susceptible to neurotoxic damage. This brain region is involved in the development and persistence of alcohol addiction and neurotoxic damage is likely to exacerbate the reinforcing effects of alcohol and may hinder treatment. Understanding the mechanism of alcohol’s neurotoxic effects on the brain and the genetic risk factors associated with alcohol abuse are the focus of current research. Because of its well-established role in neurodegenerative and neuropsychological disorders, and its emerging role in the pathophysiology of addiction, here we review the genetic and epigenetic factors involved in regulating α-synuclein expression and its potential role in the pathophysiology of chronic alcohol abuse. Elucidation of the mechanisms of α-synuclein regulation may prove beneficial in understanding the role of this key synaptic protein in disease and its potential for therapeutic modulation in the treatment of substance use disorders as well as other neurodegenerative diseases.  相似文献   
194.
195.
Distinct families of multipotent heart progenitors play a central role in the generation of diverse cardiac, smooth muscle and endothelial cell lineages during mammalian cardiogenesis. The identification of precise paracrine signals that drive the cell-fate decision of these multipotent progenitors, and the development of novel approaches to deliver these signals in vivo, are critical steps towards unlocking their regenerative therapeutic potential. Herein, we have identified a family of human cardiac endothelial intermediates located in outflow tract of the early human fetal hearts (OFT-ECs), characterized by coexpression of Isl1 and CD144/vWF. By comparing angiocrine factors expressed by the human OFT-ECs and non-cardiac ECs, vascular endothelial growth factor (VEGF)-A was identified as the most abundantly expressed factor, and clonal assays documented its ability to drive endothelial specification of human embryonic stem cell (ESC)-derived Isl1+ progenitors in a VEGF receptor-dependent manner. Human Isl1-ECs (endothelial cells differentiated from hESC-derived ISL1+ progenitors) resemble OFT-ECs in terms of expression of the cardiac endothelial progenitor- and endocardial cell-specific genes, confirming their organ specificity. To determine whether VEGF-A might serve as an in vivo cell-fate switch for human ESC-derived Isl1-ECs, we established a novel approach using chemically modified mRNA as a platform for transient, yet highly efficient expression of paracrine factors in cardiovascular progenitors. Overexpression of VEGF-A promotes not only the endothelial specification but also engraftment, proliferation and survival (reduced apoptosis) of the human Isl1+ progenitors in vivo. The large-scale derivation of cardiac-specific human Isl1-ECs from human pluripotent stem cells, coupled with the ability to drive endothelial specification, engraftment, and survival following transplantation, suggest a novel strategy for vascular regeneration in the heart.  相似文献   
196.
We isolated cDNA clones encoding a transglutaminase (TGase: EC 2.3.2.13) from a salmon (Onchorhynchus keta) cDNA library prepared from the liver. In the cDNA sequence combined, an open reading frame coding for a protein of 680 aa was found. The deduced sequence showed a considerable similarity (62.4%) to that of red sea bream TGase. By comparison of sequence similarity to other TGases, the structure of salmon TGase was like tissue type TGases, rather than membrane-associated type or plasma type TGases. As a structural feature of salmon TGase, 3 aa residues were substituted in the 25 aa sequence around the active site Cys residue, which is conserved among several tissue type TGases. The critical residues thought to form the catalytic-center triad (Cys272, His331, and Asp301) were found in the highly conserved region, but the region surrounding Tyr511, which corresponds to the residue participates in hydrogen-bond interactions of active center domain, was less similar to other TGases, except for red sea bream TGase. These findings suggests that the overall structure of fish TGase resembles tissue-type TGases, but has some unique structure.  相似文献   
197.
A growth trial with 38 weaners (castrated male pigs) was designed to compare the growth performance and carcass quality of pigs fed diets containing either soy bean meal or soy protein concentrate in a pair-feeding design. Soy bean meal (SBM) and soy protein concentrate (SPC) differed in isoflavone (daidzein plus genistein) content (782?μg/g in SBM and 125?μg/g in SPC, respectively). During the experiment, all pigs were fed four-phases-diets characterized by decreasing protein concentrations with increasing age (weaner I, weaner II, grower, finisher diets). Rations of control and experimental groups were isoenergetic, isonitrogenous, and isoaminogen. The weanling pigs with an initial live weight of 8.4?±?1.1?kg were allotted to flat deck boxes. During the growing/finishing period (days 70?–?170 of age), the pigs were housed in single boxes. Both, the weaning and the grower/finishing performances (daily body weight gain, feed intake, feed conversion ratio) were similar in both groups. No differences were found between the groups in carcass composition (percentages of cuts, tissues, and protein/fat), and meat quality of pigs. Moreover, the IGF-1R mRNA expression in longissimus muscle was not influenced by the kind of soy product. However, circulating levels of isoflavones were clearly different between pigs fed SBM (genistein 239?±?44; daidzein 162?±?42; equol 12?±?4?ng/ml plasma) and animals fed SPC (genistein 22?±?9 and daidzein 8?±?3, and equol 10?±?3?ng/ml plasma). The results confirm the expected differences in the bioavailability of soy isoflavones, yet, there were no significant differences in performance of pigs fed either soy bean meal or soy protein concentrate.  相似文献   
198.
199.
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号