排序方式: 共有137条查询结果,搜索用时 15 毫秒
101.
The experiments were designed to study the glutamate gene expression during epilepsy in adult and hypoxic insult to brain
during the neonatal period and the therapeutic role of neuroprotective supplements. We investigated the role of metabotropic
glutamate-8 receptor (mGluR8) gene expression in cerebellum during epilepsy and neuroprotective role of Bacopa monnieri extract in epilepsy. We also studied the effect of NMDA receptor 1 (NMDAR1) gene expression during neonatal hypoxia and therapeutic
role of glucose, oxygen and epinephrine supplementation. During epilepsy a significant down-regulation (P < 0.01) of mGluR8 gene expression was observed which was up-regulated (P < 0.05) near control level after B. monnieri treatment which is supported by Morris water maze experiment. In hypoxic neonates we observed up-regulation (P < 0.001) of the NMDAR1 gene expression whereas glucose and glucose + oxygen was able to significantly reverse (P < 0.001) the gene expression to near control level when compared to hypoxia and epinephrine treatment which was supported
by open field test. Our results showed that B. monnieri treatment to epileptic rats significantly brought the reversal of the down-regulated mgluR8 gene expression toward control
level. In neonatal rats, hypoxia induced expressional and functional changes in the NMDAR1 receptors of neuronal cells which
is corrected by supplementation of glucose alone or glucose followed by oxygen during the resuscitation to prevent the glutamate
related neuronal damage. Thus, the results suggest the clinical significance of corrective measures for epileptic and hypoxic
management. 相似文献
102.
103.
104.
105.
Weiss JM Jimenez HN Li G April M Uberti MA Bacolod MD Brodbeck RM Doller D 《Bioorganic & medicinal chemistry letters》2011,21(16):4891-4899
A series of 6-aryl-3-pyrrolidinylpyridine analogs was explored as structurally novel negative allosteric modulators of the mGlu5 receptor lacking an alkyne or oxadiazole moiety. Compounds in this series were characterized by tractable SAR, good in vitro potencies and brain penetration in rodents. 相似文献
106.
Holger Kubas Udo Meyer Bjoern Krueger Mirko Hechenberger Maksims Vanejevs Ronalds Zemribo Valerjans Kauss Raisa Ambartsumova Ilya Pyatkin Alexey I. Polosukhin Ulrich Abel 《Bioorganic & medicinal chemistry letters》2013,23(16):4493-4500
A virtual screening approach using various in silico methodologies led to the discovery of 2-(m-tolylamino)-7,8-dihydroquinazolin-5(6H)-one (1) as a moderately active negative allosteric modulator (NAM) of the metabotropic glutamate receptor subtype 5 (mGluR5) showing high selectivity against the subtype mGluR1. Modifications of the parent compound by rational design yielded a series of highly potent derivatives which will serve as valuable starting points for further hit-to-lead optimization efforts toward a suitable drug candidate for the treatment of l-DOPA induced dyskinesia. 相似文献
107.
We have investigated the effects of agents interfering with the cAMP pathway on the rate of miniature IPSCs in cerebellar slices. Noradrenaline and group II glutamate metabotropic receptor agonists respectively enhance and reduce the rate of miniature IPSCs, presumably because they respectively increase and decrease the presynaptic concentration of cAMP. 相似文献
108.
Hye Jin Kang Kit Menlove Jianpeng Ma Angela Wilkins Olivier Lichtarge Theodore G. Wensel 《The Journal of biological chemistry》2014,289(43):29961-29974
To define the upstream and downstream signaling specificities of metabotropic glutamate receptors (mGluR), we have examined the ability of representative mGluR of group I, II, and III to be activated by endogenous amino acids and catalyze activation of G proteins coupled to phospholipase C (PLC), or activation of Gi/o proteins coupled to the ion channel TRPC4β. Fluorescence-based assays have allowed us to observe interactions not previously reported or clearly identified. We have found that the specificity for endogenous amino acids is remarkably stringent. Even at millimolar levels, structurally similar compounds do not elicit significant activation. As reported previously, the clear exception is l-serine-O-phosphate (l-SOP), which strongly activates group III mGluR, especially mGluR4,-6,-8 but not group I or II mGluR. Whereas l-SOP cannot activate mGluR1 or mGluR2, it acts as a weak antagonist for mGluR1 and a potent antagonist for mGluR2, suggesting that co-recognition of l-glutamate and l-SOP arose early in evolution, and was followed later by divergence of group I and group II mGluR versus group III in l-SOP responses. mGluR7 has low affinity and efficacy for activation by both l-glutamate and l-SOP. Molecular docking studies suggested that residue 74 corresponding to lysine in mGluR4 and asparagine in mGluR7 might play a key role, and, indeed, mutagenesis experiments demonstrated that mutating this residue to lysine in mGluR7 enhances the potency of l-SOP. Experiments with pertussis toxin and dominant-negative Gαi/o proteins revealed that mGluR1 couples strongly to TRPC4β through Gαi/o, in addition to coupling to PLC through Gαq/11. 相似文献
109.
The reactive oxygen species (ROS) superoxide has been recognized as a critical signal triggering retinal ganglion cell (RGC) death after axonal injury. Although the downstream targets of superoxide are unknown, chemical reduction of oxidized sulfhydryls has been shown to be neuroprotective for injured RGCs. On the basis of this, we developed novel phosphine-borane complex compounds that are cell permeable and highly stable. Here, we report that our lead compound, bis (3-propionic acid methyl ester) phenylphosphine borane complex 1 (PB1) promotes RGC survival in rat models of optic nerve axotomy and in experimental glaucoma. PB1-mediated RGC neuroprotection did not correlate with inhibition of stress-activated protein kinase signaling, including apoptosis stimulating kinase 1 (ASK1), c-jun NH2-terminal kinase (JNK) or p38. Instead, PB1 led to a striking increase in retinal BDNF levels and downstream activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) pathway. Pharmacological inhibition of ERK1/2 entirely blocked RGC neuroprotection induced by PB1. We conclude that PB1 protects damaged RGCs through activation of pro-survival signals. These data support a potential cross-talk between redox homeostasis and neurotrophin-related pathways leading to RGC survival after axonal injury. 相似文献
110.