首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8216篇
  免费   543篇
  国内免费   1310篇
  2023年   134篇
  2022年   231篇
  2021年   289篇
  2020年   261篇
  2019年   285篇
  2018年   253篇
  2017年   271篇
  2016年   340篇
  2015年   340篇
  2014年   390篇
  2013年   741篇
  2012年   315篇
  2011年   359篇
  2010年   276篇
  2009年   376篇
  2008年   354篇
  2007年   377篇
  2006年   388篇
  2005年   319篇
  2004年   320篇
  2003年   306篇
  2002年   281篇
  2001年   193篇
  2000年   173篇
  1999年   165篇
  1998年   156篇
  1997年   155篇
  1996年   124篇
  1995年   141篇
  1994年   160篇
  1993年   150篇
  1992年   135篇
  1991年   95篇
  1990年   83篇
  1989年   114篇
  1988年   77篇
  1987年   73篇
  1986年   66篇
  1985年   107篇
  1984年   148篇
  1983年   97篇
  1982年   101篇
  1981年   64篇
  1980年   51篇
  1979年   57篇
  1978年   40篇
  1977年   24篇
  1976年   33篇
  1974年   26篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
A highly sensitive chemiluminescent assay for NAD(P)H have been developed. The principle of the method is as follows; NAD(P)H reduces molecular oxygen to superoxide anion (O) and hydrogen peroxide (H2O2) in the presence of 1-methoxy-5-methylphenazinium methyl sulphate (1-MPMS) as electron mediator. The produced O and H2O2 can be measured by chemiluminescent reaction using isoluminol (IL) and microperoxidase (m-POD). A linear relationship between chemiluminescence intensity and NAD(P)H concentration (log/log) was obtained ranged from 10?9 mol/I to 10?5 mol/I. This chemiluminescent reaction has been coupled to the assay of glucose-6-phosphate dehydrogenase (G6PDH), β-D -galactosidase (β-Gal) and alkaline phosphatase (ALP). The detection limits of G6PDH, β-Gal and ALP were 10?18 mol, 10?20 mol and 10?18 mol per assay, respectively. The chemiluminescent assay of these enzymes applied to chemiluminescent enzyme immunoassay for 17α-hydroxy-progesterone and DNA hybridization assay using these enzymes as label.  相似文献   
102.
Ultrasensitive bioluminescence immunoassays for the determination of peptides and proteins (illustrated with human urinary kallikrein, bradykinin and the determination of human urinary kallikrein antibody titres) have been developed. The usable ranges of the standard curves are from 5 pg to 5000 pg per litre. The relative intra-assay coefficients of variation of the tests were between 2% and 6%, and the inter-assay coefficients of variation between 4% and 12%.  相似文献   
103.
聚乙二醇处理的大豆种子的异柠檬酸裂解酶、苹果酸脱氢酶、过氧化氢酶、超氧物歧化酶、酸性磷酸酶、碱性磷酸酶的活性明显高于受低温吸胀冷害的种子子叶的活性,相关的酶活性协同地增长,而蛋白质的含量没有明显的变化。这些酶活性的提高可能是渗透调控处理对细胞膜系统修补的结果。  相似文献   
104.
以NT方法为基础比较了ELISA和FIA方法,共检测84份猴B病毒相关抗体的敏感性,结果ELISA和EIA阳性各50份(59.5%),NT阳性45份(53.6%)。三种方法相符者71份,符合率84.5%。ELISA和FIA均较NT敏感,而且快速,简便,经济,可应用于大批标本的检查。  相似文献   
105.
The metabolism of albendazole (ABZ), a benzimidazole anthelminthic, was studied in either microsomal preparations of human liver biopsies or cultured human hepatoma cell lines. Metabolites were analyzed by HPLC. Our data show that microsomes from human biopsies and two human cell lines, HepG2 and Hep3B, oxidize the drug to the sulfoxide very efficiently, whereas the third cell line tested, SK-HEP-1, does not. Both cytochrome P-450 dependent monooxygenases and favin-containing monooxygenases appear to be involved in human ABZ metabolism. Using the cell line displaying the highest ABZ-metabolizing activity, HepG2, the cytotoxic and the inducing effects of the parent drug ABZ and of two primary metabolites, the sulfoxide and the sulfone were studied. These three chemicals provoked a rise in mitotic index resulting from cell division blockage at the prophase or at the metaphase (ABZ metabolites) stage, and ABZ was more cytotoxic than its metabolites. With regard to enzyme-inducing effects, our data clearly demonstrate that the sulfoxide and, to a lesser degree, the sulfone are potent inducers of some drug metabolizing enzymes (i.e., cytochrome P-488 dependent monooxygenases and UDP glucuronyltransferase), whereas ABZ fails to increase and even slightly decreases these enzymatic activities. In conclusion, the HepG2 human hepatoma cell line appears to be suitable for the study of many parameters of metabolism and action of ABZ and other structurally related compounds in humans.Abbreviations ABZ albendazole - B[a]P benzo[a]pyrene - HPLC high-performance liquid chromatography - MC 3-methylcholanthrene - MFO mixed-function oxidase - UDPGT UDP-glucuronyltransferase  相似文献   
106.
Summary Aspartate transcarbamoylase (ATCase, EC 2.1.3.2) is the first unique enzyme common to de novo pyrimidine biosynthesis and is involved in a variety of structural patterns in different organisms. InEscherichia coli, ATCase is a functionally independent, oligomeric enzyme; in hamster, it is part of a trifunctional protein complex, designated CAD, that includes the preceding and subsequent enzymes of the biosynthetic pathway (carbamoyl phosphate synthetase and dihydroorotase). The complete complementary DNA (cDNA) nucleotide sequence of the ATCase-encoding portion of the hamster CAD gene is reported here. A comparison of the deduced amino acid sequences of the hamster andE. coli catalytic peptides revealed an overall 44% amino acid similarity, substantial conservation of predicted secondary structure, and complete conservation of all the amino acids implicated in the active site of theE. coli enzyme. These observations led to the construction of a functional hybrid ATCase formed by intragenic fusion based on the known tertiary structure of the bacterial enzyme. In this fusion, the amino terminal half (the “polar domain”) of the fusion protein was provided by a hamster ATCase cDNA subclone, and the carboxyl terminal portion (the “equatorial domain”) was derived from a clonedpyrBI operon ofE. coli K-12. The recombinant plasmid bearing the hybrid ATCase was shown to satisfy growth requirements of transformedE. coli pyrB cells. The functionality of thisE. coli-hamster hybrid enzyme confirms conservation of essential structure-function relationships between evolutionarily distant and structurally divergent ATCases.  相似文献   
107.
108.
109.
Ca2+ and Mn2+ activate the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) by root microsomes of Vicia lens as they do in other similar systems. The preparation of microsomes in the presence of Mn2+ greatly increases their ability to convert ACC into ethylene, without addition of Mn2+ in the reaction mixture. Ca2+ does not have this property. The effect could not be attributed to Mn2+ entrapping into membrane vesicles (sonication followed by repelleting had no effect) but, possibly, in part to Mn2+-mediated binding to microsomes of a soluble factor favouring the conversion of ACC to C2H4. Although no direct correlation could be established in vitro between ethylene-forming-enzyme (EFE) and peroxidase activities, some soluble peroxidases might be this soluble factor. Mn2+ favoured attachment to membranes of some peroxidase activity from the soluble fraction and from commercial HRP and lipoxygenase. This binding effect of Mn2+ cannot be readily distinguished from its role in the generation of a chain of free radicals and in redox mechanisms.  相似文献   
110.
The effects of ethylene (C2H4), (2-chloroethyl)phosphonic acid (ethefon) and 1-aminocyclopropane-1-carboxylic acid (ACC) on senescence of isolated intact petals and of upper petal parts of carnation flowers ( Dianthus caryophyllus L. cv. White Sim) were investigated.
Isolated upper petal parts did not respond to treatment with ethefon or ACC. These tissues did, however, show severe wilting in intact petals that were treated with ethefon or ACC. When isolated upper petal parts were simultaneously treated with ACC and ethefon or ACC and ethylene, a marked synergistic effect on senescence was found. Treatment of isolated petals with radiolabeled ACC led to the accumulation of radiolabeled ACC and N-malonyl-ACC (MACC) in the upper parts. The formation of ethylene and the malonylation of ACC were inhibited by pretreatment of the flower with the inhibitor of ethylene action, silver thiosulphate (STS), which indicates that both were induced by endogenously produced ethylene. Treatment of isolated upper parts with ACC slightly increased their ethylene production. However, when these petal parts were simultaneously treated with ethylene and ACC, the conversion of ACC to ethylene was markedly stimulated.
The results indicate that, in intact petals, ethylene may be translocated from the basal to the upper part where it stimulates the activity of the ethylene-forming enzyme (EFE), thereby making the tissue receptive to ACC.
In addition, it was found that upon incubation of petal portions in radiolabeled ACC, both the petal tissue and the incubation solutions produced radiolabeled carbon dioxide. This was shown to be due to microorganisms that were able to metabolize the carbon atoms in the 2 and 3 position of ACC into carbon dioxide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号