首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2078篇
  免费   155篇
  国内免费   34篇
  2024年   3篇
  2023年   46篇
  2022年   57篇
  2021年   77篇
  2020年   79篇
  2019年   74篇
  2018年   99篇
  2017年   83篇
  2016年   99篇
  2015年   140篇
  2014年   131篇
  2013年   238篇
  2012年   108篇
  2011年   116篇
  2010年   82篇
  2009年   108篇
  2008年   89篇
  2007年   83篇
  2006年   80篇
  2005年   88篇
  2004年   71篇
  2003年   65篇
  2002年   61篇
  2001年   39篇
  2000年   47篇
  1999年   24篇
  1998年   16篇
  1997年   7篇
  1996年   6篇
  1995年   2篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1977年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
排序方式: 共有2267条查询结果,搜索用时 15 毫秒
101.
After a cytokine binds to its receptor on the cell surface (pH approximately 7), the complex is internalized into acidic endosomal compartments (pH approximately 5-6), where partially unfolded intermediates can form. The nature of these structural transitions was studied for wild-type interleukin-2 (IL-2) and wild-type granulocyte colony-stimulating factor (G-CSF). A noncoincidence of denaturation transitions in the secondary and tertiary structure of IL-2 and tertiary structural perturbations in G-CSF suggest the presence of an intermediate state for each, a common feature of this structural family of four-helical bundle proteins. Unexpectedly, both IL-2 and G-CSF display monotonic increases in stability as the pH is decreased from 7 to 4. We hypothesize that such cytokines with cell-based clearance mechanisms in vivo may have evolved to help stabilize endosomal complexes for sorting to lysosomal degradation. We show that mutants of both IL-2 and G-CSF have differential stabilities to their wild-type counterparts as a function of pH, and that these differences may explain the differences in ligand trafficking and depletion. Further understanding of the structural changes accompanying unfolding may help guide cytokine design with respect to ligand binding, endocytic trafficking, and, consequently, therapeutic efficacy.  相似文献   
102.
Synthesis of acetylcholine depends on the plasma membrane uptake of choline by a high affinity choline transporter (CHT1). Choline uptake is regulated by nerve impulses and trafficking of an intracellular pool of CHT1 to the plasma membrane may be important for this regulation. We have generated a hemagglutinin (HA) epitope tagged CHT1 to investigate the organelles involved with intracellular trafficking of this protein. Expression of CHT1-HA in HEK 293 cells establishes Na+-dependent, hemicholinium-3 sensitive high-affinity choline transport activity. Confocal microscopy reveals that CHT1-HA is found predominantly in intracellular organelles in three different cell lines. Importantly, CHT1-HA seems to be continuously cycling between the plasma membrane and endocytic organelles via a constitutive clathrin-mediated endocytic pathway. In a neuronal cell line, CHT1-HA colocalizes with the early endocytic marker green fluorescent protein (GFP)-Rab 5 and with two markers of synaptic-like vesicles, VAMP-myc and GFP-VAChT, suggesting that in cultured cells CHT1 is present mainly in organelles of endocytic origin. Subcellular fractionation and immunoisolation of organelles from rat brain indicate that CHT1 is present in synaptic vesicles. We propose that intracellular CHT1 can be recruited during stimulation to increase choline uptake in nerve terminals.  相似文献   
103.
Members of the synaptotagmin family have been proposed to function as Ca2+ sensors in membrane fusion. Syt VII is a ubiquitously expressed synaptotagmin previously implicated in plasma membrane repair and Trypanosoma cruzi invasion, events which are mediated by the Ca2+-regulated exocytosis of lysosomes. Here, we show that embryonic fibroblasts from Syt VII-deficient mice are less susceptible to trypanosome invasion, and defective in lysosomal exocytosis and resealing after wounding. Examination of mutant mouse tissues revealed extensive fibrosis in the skin and skeletal muscle. Inflammatory myopathy, with muscle fiber invasion by leukocytes and endomysial collagen deposition, was associated with elevated creatine kinase release and progressive muscle weakness. Interestingly, similar to what is observed in human polymyositis/dermatomyositis, the mice developed a strong antinuclear antibody response, characteristic of autoimmune disorders. Thus, defective plasma membrane repair in tissues under mechanical stress may favor the development of inflammatory autoimmune disease.  相似文献   
104.
Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes at a nonpermissive temperature, with no apparent accumulation of vesicle intermediates. Genetic interaction analyses of the yip1-4 mutation corroborate a function in ER budding. Finally, ordering experiments show that preincubation of ER membranes with COPII proteins decreases sensitivity to anti-Yip1p antibodies, indicating an early requirement for Yip1p in vesicle formation. We propose that Yip1p has a previously unappreciated role in COPII vesicle biogenesis.  相似文献   
105.
Btn2p is a novel coiled coil cytosolic protein in Saccharomyces cerevisiae. We report that Btn2p interacts with Yif1p, a component of a protein complex at the Golgi that functions in ER to Golgi transport. Deletion of Btn2p, btn2-delta, results in mis-localiztion of Yif1p to the vacuole. Therefore, Btn2p may have an apparent role in intracellular trafficking of proteins. Btn2p was originally identified as being up-regulated in a btn1-delta strain, which exhibits dysregulation of vacuolar pH, and this up-regulation of Btn2p was presumed to contribute to maintaining a stable vacuolar pH [Pearce et al. Nat. Genet. 22 (1999) 55]. We propose that up-regulation of Btn2p in btn1-delta is an indicator of altered trafficking within the cell, and as btn1-delta serves as a model for the lysosomal storage disorder Batten disease, that altered intracellular trafficking may contribute to some of the cellular pathological hallmarks of this disease.  相似文献   
106.
Intracellular vesicle trafficking is mediated by a set of SNARE proteins in eukaryotic cells. Several SNARE proteins are required for vacuolar protein transport and vacuolar biogenesis in Saccharomyces cerevisiae. A search of the Schizosaccharomyces pombe genome database revealed a total of 17 SNARE-related genes. Although no homologs of Vam3p, Nyv1p, and Vam7p have been found in S. pombe, we identified one SNARE-like protein that is homologous to S. cerevisiae Pep12p. However, the disruptants transport vacuolar hydrolase CPY (SpCPY) to the vacuole normally, suggesting that the Pep12 homolog is not required for vacuolar protein transport in S. pombe cells. To identify the SNARE protein(s) involved in Golgi-to-vacuole protein transport, we have deleted four SNARE homolog genes in S. pombe. SpCPY was significantly missorted to the cell surface on deletion of one of the SNARE proteins, Fsv1p (SPAC6F12.03c), with no apparent S. cerevisiae ortholog. In addition, sporulation, endocytosis, and in vivo vacuolar fusion appear to be normal in fsv1Delta cells. These results showed that Fsv1p is mainly involved in vesicle-mediated protein transport between the Golgi and vacuole in S. pombe cells.  相似文献   
107.
The directionality of matrix deposition in vivo is governed by the ability of a cell to direct vesicularflow to a specific target site. Osteoblastic cells direct newly synthesized bone matrix proteins toward the bone surface. In this study, we dissect the molecular mechanisms underlying the polarized trafficking of matrix protein in osteoblasts. We demonstrate using TEM, immunocytochemistry, and cDNA analysis, the ability of osteoblastic cells in culture to form tight junction-like structures and report the expression of the tight junction associated proteins occludin and claudins 1-3 in these cells. We identify intercellular contact sites and the leading edge of migratory osteoblasts as major target sites of vesicular trafficking in osteoblasts. Proteins required for this process, rsec6, NSF, VAMP1, and syntaxin 4, as well as the bone matrix protein, osteopontin, localize to these sites. We demonstrate that osteoblasts in vivo possess VAMP1 and, furthermore, report the expression of two VAMP1 splice variants in these cells. In addition, osteoblasts express the NSF attachment protein alpha-SNAP and the t-SNARE SNAP23. Thus, cell-to-cell contact sites and the leading edge of migratory osteoblasts contain a unique complement of proteins required for SNARE mediated membrane fusion.  相似文献   
108.
Late endosomes, which have the morphological characteristics of multivesicular bodies, have received relatively little attention in comparison with early endosomes and lysosomes. Recent work in mammalian and yeast cells has given insights into their structure and function, including the generation of their multivesicular morphology. Lipid partitioning to create microdomains enriched in specific lipids is observed in late endosomes, with some lumenal vesicles enriched in lysobisphosphatidic acid and others in phosphatidylinositol 3-phosphate. Sorting of membrane proteins into the lumenal vesicles may occur because of the properties of their trans-membrane domains, or as a result of tagging with ubiquitin. Yeast class E Vps proteins and their mammalian orthologs are the best candidates to make up the protein machinery that controls inward budding, a process that starts in early endosomes. Late endosomes are able to undergo homotypic fusion events and also heterotypic fusion with lysosomes, a process that delivers endocytosed macromolecules for proteolytic degradation.  相似文献   
109.
The B cell antigen receptor (BCR) is a member of an important family of multichain immune recognition receptors, which are complexes composed of ligand-binding domains associated with signal-transduction complexes. The signaling components of these receptors have no inherent kinase activity but become tyrosine phosphorylated in their cytoplasmic domains by Src-family kinases upon oligomerization, thus initiating signaling cascades. The BCR is unique in this family in that, in addition to its signaling function, it also serves to deliver antigen to intracellular compartments where the antigen is processed and presented bound to major histocompatibility complex (MHC) class II molecules. Recent evidence indicates that both the signaling and antigen-trafficking functions of the BCR are regulated by cholesterol- and sphingolipid-rich plasma membrane microdomains termed rafts. Indeed, upon oligomerization, the BCR translocates into rafts that concentrate the Src-family kinase Lyn and is subsequently internalized directly from the rafts. Thus, translocation into rafts allows the association of the oligomerized BCR with Lyn and the initiation of both signaling and trafficking. Significantly, the access of the BCR to rafts appears to be controlled by a variety of B lymphocyte co-receptors, as well as factors including the developmental state of the B cell and viral infection. Thus, the translocation of the immune receptors into signaling-competent microdomains may represent a novel mechanism to initiate and regulate immune-cell activation.  相似文献   
110.
We used nigericin, a K+/H+ exchanger, to test whether glucose transport in 3T3-L1 adipocytes was modulated by changes in intracellular pH. Our results showed that nigericin increased basal but decreased insulin-stimulated glucose uptake in a time- and dose-dependent manner. Whereas the basal translocation of GLUT1 was enhanced, insulin-stimulated GLUT4 translocation was inhibited by nigericin. On the other hand, the total amount of neither transporter protein was altered. The finding that insulin-stimulated phosphoinositide 3-kinase (PI 3-kinase) activity was not affected by nigericin implies that nigericin exerted its inhibition at a step downstream of PI 3-kinase activation. At maximal dose, nigericin rapidly lowered cytosolic pH to 6.7; however, this effect was transient and cytosolic pH was back to normal in 20 min. Removal of nigericin from the incubation medium after 20 min abolished its enhancing effect on basal but had little influence on its inhibition of insulin-stimulated glucose transport. Moreover, lowering cytosolic pH to 6.7 with an exogenously added HCl solution had no effect on glucose transport. Taken together, it appears that nigericin may inhibit insulin-stimulated glucose transport mainly by interfering with GLUT4 translocation, probably by a mechanism not related to changes in cytosolic pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号