首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   27篇
  国内免费   22篇
  474篇
  2024年   1篇
  2023年   8篇
  2022年   19篇
  2021年   14篇
  2020年   20篇
  2019年   21篇
  2018年   22篇
  2017年   19篇
  2016年   11篇
  2015年   18篇
  2014年   31篇
  2013年   48篇
  2012年   14篇
  2011年   15篇
  2010年   24篇
  2009年   11篇
  2008年   24篇
  2007年   18篇
  2006年   12篇
  2005年   16篇
  2004年   8篇
  2003年   11篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   7篇
  1984年   1篇
  1983年   6篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
排序方式: 共有474条查询结果,搜索用时 6 毫秒
51.
Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids.  相似文献   
52.
Cystinosin is a lysosomal cystine transporter defective in cystinosis, an autosomal recessive lysosomal storage disorder. It is composed of seven transmembrane (TM) domains and contains two lysosomal targeting motifs: a tyrosine‐based signal (GYDQL) in its C‐terminal tail and a non‐classical motif in its fifth inter‐TM loop. Using the yeast two‐hybrid system, we showed that the GYDQL motif specifically interacted with the μ subunit of the adaptor protein complex 3 (AP‐3). Moreover, cell surface biotinylation and total internal reflection fluorescence microscopy revealed that cystinosin was partially mislocalized to the plasma membrane (PM) in AP‐3‐depleted cells. We generated a chimeric CD63 protein to specifically analyze the function of the GYDQL motif. This chimeric protein was targeted to lysosomes in a manner similar to cystinosin and was partially mislocalized to the PM in AP‐3 knockdown cells where it also accumulated in the trans‐Golgi network and early endosomes. Together with the fact that the surface levels of cystinosin and of the CD63‐GYDQL chimeric protein were not increased when clathrin‐mediated endocytosis was impaired, our data show that the tyrosine‐based motif of cystinosin is a ‘strong’ AP‐3 interacting motif responsible for lysosomal targeting of cystinosin by a direct intracellular pathway.   相似文献   
53.
Human endothelial lipase (EL) is a member of a family of lipases and phospholipases that are involved in the metabolism of plasma lipoproteins. EL displays a preference to hydrolyze lipids in HDL. We report here that a naturally occurring low frequency coding variant in the EL gene (LIPG), glycine-26 to serine (G26S), is significantly more common in African-American individuals with elevated HDL cholesterol (HDL-C) levels. To test the hypothesis that this variant results in reduced EL function, we extensively characterized and compared the catalytic and noncatalytic functions of the G26S variant and wild-type (WT) EL. While the catalytic-specific activity of G26S EL is similar to WT EL, its secretion is markedly reduced. Consistent with this observation, we found that carriers of the G26S variant had significantly reduced plasma levels of EL protein. Thus, this N-terminal variant results in reduced secretion of EL protein, plausibly leading to increased HDL-C levels.  相似文献   
54.
A novel screening procedure was developed for isolating Chinese hamster ovary cell mutants altered in the early steps of the biosynthesis of asparagine-linked glycoproteins. This procedure identifies cells with low intracellular levels of two lysosomal hydrolases, beta-glucuronidase and alpha-iduronidase. One mutant cell line isolated in this way, CHB 11-1-3, has low intracellular levels of seven lysosomal enzymes as compared to wild-type cells. Although CHB 11-1-3 synthesizes mannosylphosphoryldolichol and [Man]5[NAcG1cNH2]2-P-P-lipid, it fails to utilize these lipid intermediates to make normal amounts of [Glc]3[Man]9[NAcG1cNH2]2P-P-lipid. As a consequence of this glycosylation defect, this mutant transfers oligosaccharides of a different structure than wild type to the lysosomal enzyme beta-hexosaminidase. In addition, it underglycosylates its proteins.  相似文献   
55.
Neutrophils play an important role in the pathogenesis of rheumatoid arthritis (RA) and various inflammatory conditions, by accumulation and liberation of active proteolytic enzymes. The effect of milk extract of Semecarpus anacardium Linn. nuts (SA) at a dosage of 150 mg kg(-1) body weight day(-1) for 14 days on adjuvant arthritis was studied to gain some insight into this intriguing disease in relation to neutrophil functions. The decreased phagocytic function of neutrophils (phagocytic index and avidity index) found in adjuvant arthritis was significantly increased by the administration of the drug SA. Increased levels of reactive oxygen species (superoxide radical, hydroxyl radical, H2O2 and myeloperoxidase), lysosomal enzymes (acid phosphatase and cathepsin D) and increased accumulation of neutrophils in the joints observed in adjuvant arthritic animals were reverted back to near normal levels by treatment with SA. The results of this study indicate that SA can be considered to be a good therapeutic agent for inflammation and arthritis.  相似文献   
56.
Biosynthesis of lysosomal endopeptidases   总被引:6,自引:0,他引:6  
Despite the clear differences between the amino acid sequence and enzymatic specificity of aspartic and cysteine endopeptidases, the biosynthetic processing of lysosomal members of these two families is very similar. With in vitro translation and pulse-chase analysis in tissue culture cells, the biosynthesis of cathepsin D, a aspartic protease, and cathepsins B, H and L, cysteine proteases, are compared. Both aspartic and cysteine endopeptidases undergo cotranslational cleavage of an amino-terminal signal peptide that mediates transport across the endoplasmic reticulum (ER) membrane. Addition of high-mannose carbohydrate also occurs cotranslationally in the lumen of the ER. Proteases of both enzyme classes are initially synthesized as inactive proenzymes possessing amino-terminal activation peptides. Removal of the propeptide generates an active single-chain enzyme. Whether the single-chain enzyme undergoes asymmetric cleavage into a light and a heavy chain appears to be cell type specific. Finally, late during their biosynthesis both classes of enzymes undergo amino acid trimming, losing a few amino acid residues at the cleavage site between the light and heavy chains and/or at their carboxyltermini. During biosynthesis these enzymes are also secreted to some extent. In most cells the secreted enzyme is the proenzyme bearing some complex carbohydrate. Under certain physiological conditions the inactive secreted enzymes may become activated as a result of a conformational change that may or may not result in autolysis. Analysis of the biochemical nature of the various processing steps helps define the cellular pathway followed by newly synthesized proteases targeted to the lysosome.  相似文献   
57.
Cytotoxic lymphocytes (CLs) contain lysosome-related organelles (LROs) that perform the normal degradative functions of the lysosome, in addition to storage and release of powerful cytotoxins employed to kill virally infected or abnormal cells. Among these cytotoxins is granzyme B (GrB), a protease that has also been implicated in activation (restimulation)-induced cell death of natural killer (NK) and T cells, but the underlying mechanism and its regulation are unclear. Here we show that restimulation of previously activated human or mouse lymphocytes induces lysosomal membrane permeabilisation (LMP), followed by GrB release from LROs into the CL cytosol. The model lysosomal stressors sphingosine and Leu-Leu-methyl-ester, and CLs from gene-targeted mice were used to show that LMP releases GrB in both a time- and concentration-dependent manner, and that the liberated GrB is responsible for cell death. The endogenous GrB inhibitor Serpinb9 (Sb9) protects CLs against LMP-induced death but is decreasingly effective as the extent of LMP increases. We also used these model stressors to show that GrB is the major effector of LMP-mediated death in T cells, but that in NK cells additional effectors are released, making GrB redundant. We found that limited LMP and GrB release occurs constitutively in proliferating lymphocytes and in NK cells engaged with targets in vitro. In Ectromelia virus-infected lymph nodes, working NK cells lacking Sb9 are more susceptible to GrB-mediated death. Taken together, these data show that a basal level of LMP occurs in proliferating and activated lymphocytes, and is increased on restimulation. LMP releases GrB from LROs into the lymphocyte cytoplasm and its ensuing interaction with Sb9 dictates whether or not the cell survives. The GrB-Sb9 nexus may therefore represent an additional mechanism of limiting lymphocyte lifespan and populations.  相似文献   
58.
The function of lysosomes relies on the ability of the lysosomal membrane to fuse with several target membranes in the cell. It is known that in lysosomal storage disorders (LSDs), lysosomal accumulation of several types of substrates is associated with lysosomal dysfunction and impairment of endocytic membrane traffic. By analysing cells from two severe neurodegenerative LSDs, we observed that cholesterol abnormally accumulates in the endolysosomal membrane of LSD cells, thereby reducing the ability of lysosomes to efficiently fuse with endocytic and autophagic vesicles. Furthermore, we discovered that soluble N‐ethylmaleimide‐sensitive factor attachment protein (SNAP) receptors (SNAREs), which are key components of the cellular membrane fusion machinery are aberrantly sequestered in cholesterol‐enriched regions of LSD endolysosomal membranes. This abnormal spatial organization locks SNAREs in complexes and impairs their sorting and recycling. Importantly, reducing membrane cholesterol levels in LSD cells restores normal SNARE function and efficient lysosomal fusion. Our results support a model by which cholesterol abnormalities determine lysosomal dysfunction and endocytic traffic jam in LSDs by impairing the membrane fusion machinery, thus suggesting new therapeutic targets for the treatment of these disorders.  相似文献   
59.
Glioblastoma is the most malignant and common type of brain tumor with devastating outcome. Because current treatment modalities are mostly ineffective in controlling and curing glioblastoma, new and innovative therapeutic strategies must be developed. This article describes recent advances in chemoimmunotherapy, which is combination of chemotherapy and immunotherapy, against glioblastoma. We provide an overview of available treatment options for glioblastomas, gaps in our knowledge of immune recognition of these malignant tumors, and chemotherapeutic and immunotherapeutic agents that need to be further explored for designing novel chemoimmunotherapeutic strategy for the management of human glioblastomas. Our recent study demonstrated that combination of the chemotherapeutic agent all-trans retinoic acid (ATRA) and the immunotherapeutic agent interferon-gamma (IFN-γ) could concurrently induce differentiation, apoptotic death, and immune components in two different human glioblastoma cell lines. We propose that combination of ATRA and IFN-γ can become an efficacious chemoimmunotherapy for the treatment of human glioblastoma. Special issue in honor of Naren Banik.  相似文献   
60.
As an initial step to develop plants as systems to produce enzymes for the treatment of lysosomal storage disorders, Arabidopsis thaliana wild-type (Col-0) plants were transformed with a construct to express human alpha-l-iduronidase (IDUA; EC 3.2.1.76) in seeds using the promoter and other regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene. IDUA protein was easily detected on Western blots of extracts from the T(2) seeds, and extracts contained IDUA activity as high as 2.9 nmol 4-methylumbelliferone (4 MU)/min/mg total soluble protein (TSP), corresponding to approximately 0.06 microg IDUA/mg TSP. The purified protein reacted with an antibody specific for xylose-containing plant complex glycans, indicating its transit through the Golgi complex. In an attempt to avoid maturation of the N-linked glycans of IDUA, the same IDUA transgene was introduced into the Arabidopsis cgl background, which is deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101), the first enzyme in the pathway of complex glycan biosynthesis. IDUA activity and protein levels were significantly higher in transgenic cgl vs. wild-type seeds (e.g. maximum levels were 820 nmol 4 MU/min/mg TSP, or 18 microg IDUA/mg TSP). Affinity-purified IDUA derived from cgl mutant seeds showed a markedly reduced reaction with the antibody specific for plant complex glycans, despite transit of the protein to the apoplast. Furthermore, gel mobility changes indicated that a greater proportion of its N-linked glycans were susceptible to digestion by Streptomyces endoglycosidase H, as compared to IDUA derived from seeds of wild-type Arabidopsis plants. The combined results indicate that IDUA produced in cgl mutant seeds contains glycans primarily in the high-mannose form. This work clearly supports the viability of using plants for the production of human therapeutics with high-mannose glycans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号