首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   930篇
  免费   33篇
  国内免费   48篇
  1011篇
  2023年   7篇
  2022年   18篇
  2021年   13篇
  2020年   15篇
  2019年   18篇
  2018年   31篇
  2017年   21篇
  2016年   12篇
  2015年   18篇
  2014年   37篇
  2013年   95篇
  2012年   28篇
  2011年   49篇
  2010年   16篇
  2009年   43篇
  2008年   52篇
  2007年   47篇
  2006年   39篇
  2005年   43篇
  2004年   33篇
  2003年   36篇
  2002年   26篇
  2001年   19篇
  2000年   20篇
  1999年   14篇
  1998年   19篇
  1997年   18篇
  1996年   9篇
  1995年   19篇
  1994年   14篇
  1993年   19篇
  1992年   7篇
  1991年   9篇
  1990年   16篇
  1989年   4篇
  1988年   5篇
  1987年   14篇
  1986年   10篇
  1985年   10篇
  1984年   11篇
  1983年   5篇
  1982年   12篇
  1981年   9篇
  1980年   12篇
  1979年   9篇
  1978年   7篇
  1977年   4篇
  1976年   6篇
  1974年   4篇
  1973年   5篇
排序方式: 共有1011条查询结果,搜索用时 0 毫秒
101.
The pyruvate metabolism in the lactic acid bacterium Lactococcus lactis was studied in anaerobic cultures under transient conditions. During growth of L. lactis in continuous culture at high dilution rate, homolactic product formation was observed, i.e., lactate was produced as the major end product. At a lower dilution rate, the pyruvate metabolism shifted towards mixed acid-product formation where formate, acetate, and ethanol were produced in addition to lactate. The regulation of the shift in pyruvate metabolism was investigated by monitoring the dynamic behavior of L. lactis in continuous cultures subjected to step changes in dilution rate. Both shift-up and shift-down experiments were carried out, and these experiments showed that the enzyme pyruvate formate-lyase (PFL) plays a key role in the regulation of the shift. Pyruvate formate-lyase in vivo activity was regulated both at the level of gene expression and by allosteric modulation of the enzyme. A simple mathematical model was proposed to estimate the relative significance of the regulatory mechanisms involved.  相似文献   
102.
Cystine lyase (EC 4.4.1.-) was purified 277-fold by a combination of ammonium sulfate precipitation, chromatography on calcium phosphate and DEAE-cellulose with a 6% recovery. The MW as measured by gel filtration on Biogel p-300 was ca 150 000. The enzyme catalysed the pyridoxal phosphate-dependent degradation of cystine to pyruvate, ammonia and cysteine persulfide. Cysteine persulfide normally degraded spontaneously to elemental sulfur and cysteine, that further reacted to yield cystine and H2S. Pyridoxal phosphate stabilized the enzyme. The Km value for cystine was 0.94 mM. The enzyme was insensitive to thiol reagents but was inhibited by some thiols (which may have reduced the cystine). Cystine lyase degraded many compounds having the L-α-amino propionic acid group with a thioether or disulfide linkage attached to the β-carbon but was inactive towards D-configuration at the α-carbon or L-homocystine. The cystine lyase was also a β-cystathionase as indicated by (1) a constant ratio of β-cystathionase activity to cystine lyase activity throughout a 277-fold purification, (2) the inhibition of cystine lyase activity by cystathionine and inhibition of β-cystathionase activity by cystine and (3) similarity in sensitivity to heat, cyanide and hydroxylamine. Using DL-cystathionine as substrate, the Km value was 4 mM.  相似文献   
103.
O-Methyltransferases catalysing the methylation of caffeic acid to ferulic acid, isoferulic acid and dimethylcaffeic acid were extracted from the endoplasmic reticulum of Populus glandular tissue. The significance of methoxylated cinnamic acids in secreted flavonoid biosynthesis is discussed.  相似文献   
104.
105.
As an eco-friendly biocatalyst for alginate hydrolysis, bacteria-derived alginate lyase (AlgL) has been widely used in research and industries to produce oligosaccharides. However, the cost of AlgL enzyme production remains high due to the low expression and difficulty in purification from bacterial cells. In this study we report an effective method to overexpress the Pseudomonas aeruginosa AlgL (paAlgL) enzyme in Pichia pastoris. Fused with a secretory peptide, the recombinant paAlgL was expressed extracellularly and purified from the culture supernatant through a simple process. The purified recombinant enzyme is highly specific for alginate sodium with a maximal activity of 2,440 U/mg. The enzymatic activity remained stable below 45°C and at pH between 4 and 10. The recombinant paAlgL was inhibited by Zn2+, Cu2+, and Fe2+ and promoted by Co2+ and Ca2+. Interestingly, we also found that the recombinant paAlgL significantly enhanced the antimicrobial activity of antibiotics ampicillin and kanamycin against Pseudomonas aeruginosa. Our results introduce a method for efficient AlgL production, the characterization, and a new feature of the recombinant paAlgL as an enhancer of antibiotics against Pseudomonas aeruginosa.  相似文献   
106.
The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major role in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.  相似文献   
107.
唾液酸(NANA)是一族神经氨酸类衍生物,它处于许多糖蛋白的寡糖链的非还原末端,具有重要的生理功能和药用价值。由于唾液酸的常规化学合成分离方法复杂,难以大量制备,因此价格很贵。而用酶法合成唾液酸,即在唾液酸醛缩酶(ALD)作用下,以丙酮酸钠和NI乙酰甘露糖胺为底物合成唾液酸.则原料便宜,步骤简单、产率高,且适合工业化生产。但唾液酸醛缩酶是一个诱导酶,只能在以唾液酸为唯一碳源的培养基下才能生成,这就大大影响了它的应用。因此,我们构建了产该酶的工程菌,为唾液酸作为药物和原料药的大量应用打下了基础。  相似文献   
108.
109.
Polysaccharide lyases (PLs) are a broad class of microbial enzymes that degrade anionic polysaccharides. Equally broad diversity in their polysaccharide substrates has attracted interest in biotechnological applications such as biomass conversion to value-added chemicals and microbial biofilm removal. Unlike other PLs, Smlt1473 present in the clinically relevant Stenotrophomonas maltophilia strain K279a demonstrates a wide range of pH-dependent substrate specificities toward multiple, diverse polysaccharides: hyaluronic acid (pH 5.0), poly-β-D-glucuronic (celluronic) acid (pH 7.0), poly-β-D-mannuronic acid, and poly-α-L-guluronate (pH 9.0). To decode the pH-driven multiple substrate specificities and selectivity in this single enzyme, we present the X-ray structures of Smlt1473 determined at multiple pH values in apo and mannuronate-bound states as well as the tetra-hyaluronate-docked structure. Our results indicate that structural flexibility in the binding site and N-terminal loop coupled with specific substrate stereochemistry facilitates distinct modes of entry for substrates having diverse charge densities and chemical structures. Our structural analyses of wild-type apo structures solved at different pH values (5.0–9.0) and pH-trapped (5.0 and 7.0) catalytically relevant wild-type mannuronate complexes (1) indicate that pH modulates the catalytic microenvironment for guiding structurally and chemically diverse polysaccharide substrates, (2) further establish that molecular-level fluctuation in the enzyme catalytic tunnel is preconfigured, and (3) suggest that pH modulates fluctuations resulting in optimal substrate binding and cleavage. Furthermore, our results provide key insight into how strategies to reengineer both flexible loop and regions distal to the active site could be developed to target new and diverse substrates in a wide range of applications.  相似文献   
110.
Enzymes with radical-pair intermediates have been considered as a likely target for purported magnetic field effects in humans. The bacterial enzyme ethanolamine ammonia lyase and the human enzyme methylmalonyl-CoA mutase catalyze coenzyme B12-dependent rearrangement reactions. A common step in the mechanism of these two enzymes is postulated to be homolysis of the cobalt-carbon bond of the cofactor to generate a spin-correlated radical pair consisting of the 5′-deoxyadenosyl radical and cob(II)alamin [Ado· Cbl(II)]. Thus, the reactions catalyzed by these enzymes are expected to be sensitive to an applied magnetic field according to the same principles that control radical pair chemical reactions. The magnetic field effect on ethanolamine ammonia lyase reported previously has been corroborated independently in one of the authors' laboratory. However, neither the human nor the bacterial mutase from Propionibacterium shermanii exhibits a magnetic field effect that could be greater than about 15%, considering the error limit imposed by the uncertainty of the coupled assay. Our studies suggest that putative magnetic field effects on physiological processes are not likely to be mediated by methylmalonyl-CoA mutase. Bioelectromagnetics 18:506–513, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号