首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   13篇
  国内免费   12篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   8篇
  2018年   8篇
  2017年   2篇
  2016年   1篇
  2015年   15篇
  2014年   18篇
  2013年   9篇
  2012年   14篇
  2011年   18篇
  2010年   8篇
  2009年   18篇
  2008年   17篇
  2007年   9篇
  2006年   15篇
  2005年   10篇
  2004年   13篇
  2003年   14篇
  2002年   14篇
  2001年   7篇
  2000年   9篇
  1999年   8篇
  1998年   14篇
  1997年   12篇
  1996年   9篇
  1995年   14篇
  1994年   14篇
  1993年   9篇
  1992年   10篇
  1991年   8篇
  1990年   10篇
  1989年   10篇
  1988年   11篇
  1987年   4篇
  1986年   3篇
  1985年   13篇
  1984年   11篇
  1983年   5篇
  1982年   12篇
  1981年   16篇
  1980年   9篇
  1979年   8篇
  1978年   7篇
  1977年   4篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有468条查询结果,搜索用时 187 毫秒
51.
52.
Human retinal pigmented epithelial cell (hRPE) proliferation plays a significant role in various proliferative diseases associated to the retina that leads to loss of vision, such as proliferative vitreoretinopathy. In the current study, the role of the bovine vitreous lipid factor (bVLF) in hRPE cell proliferation has been investigated. bVLF is a bioactive lipid isolated from the bovine vitreous body with strong Ca(2+)-mobilizing activity in fibroblast. In the first approach, the effects of bVLF on Ca(2+)-mobilizing activity were investigated in hRPE. The results showed that bVLF induced, in a dose-dependent manner, a Ca(2+) mobilization from PA-sensitive intracellular stores [non-Ins(1,4,5)P(3)-sensitive stores], in which extracellular Ca(2+) participated. The increase in intracellular Ca(2+) was associated with a dose-dependent inhibiting effect on cell proliferation. At a dose of 10 microg/mL, bVLF caused a 26% or a 44% inhibition in hRPE cell proliferation during the 3- or the 6-day culture periods, respectively. These effects appear to be specific in hRPE cells, since EFGR-T17 fibroblast cells treated with equivalent amounts of bVLF did not show any inhibiting effects. This inhibitory action was not associated to apoptotic/necrotic processes. Furthermore, bVLF inhibited EGF-, bFGF-, IGF-I-, PDGF-, HGF- and VEGF-induced proliferation of the hRPE cells. Moreover, this inhibitory response was also observed in FBS-induced hRPE cell proliferation. bVLF, at a concentration of 10 microg/mL, induced 16% inhibition of proliferation during a culture period of 3 days. This inhibitory action was greater during the 6-day culture period, exceeding 40%. With regard to this action, the results showed that bVLF has a potent inhibitory effect on ERK1/2 activation, and plays a key role in the control of hRPE cell proliferation. These observations contribute to the knowledge of inhibitory factors responsible for keeping antiproliferative environment that preserve the RPE-associated activities in normal states. It advances the interesting possibility that this factor or a factor with characteristics common to bVLF might be involved in the pathogenesis of abnormal proliferative eye processes.  相似文献   
53.
Regulation of intracellular cyclic AMP is critical to the modulation of many cellular activities, including cellular differentiation. Moreover, morphological differentiation has been linked to subsequent alterations in the cAMP signaling pathway in various cellular models. The current study was designed to explore the mechanism for the previously reported enhancement of adenylate cyclase activity in Cath.a differentiated cells following differentiation. Differentiation of Cath.a differentiated cells stably expressing the D2L dopamine receptor markedly potentiated both forskolin- and A2-adenosine receptor-stimulated cAMP accumulation. This enhancement was accompanied by a twofold increase in adenylate cyclase 6 (AC6) expression and a dramatic loss in the expression of AC9. The ability of Ca2+ to inhibit drug-stimulated cAMP accumulation was enhanced following differentiation, as was D2L dopamine receptor-mediated inhibition of Galphas-stimulated cAMP accumulation. Differentiation altered basal and drug-stimulated phosphorylation of the cAMP-response element-binding protein, which was independent of changes in protein kinase A expression. The current data suggest that differentiation of the neuronal cell model, Cath.a differentiated cells induces significant alterations in the expression and function of both the proximal and distal portions of the cAMP signaling pathway and may impact cellular operations dependent upon this pathway.  相似文献   
54.
55.
Repeat in toxin (RTX) motifs are nonapeptide sequences found among numerous virulence factors of Gram-negative bacteria. In the presence of calcium, these RTX motifs are able to fold into an idiosyncratic structure called the parallel β-roll. The adenylate cyclase toxin (CyaA) produced by Bordetella pertussis, the causative agent of whooping cough, is one of the best-characterized RTX cytolysins. CyaA contains a C-terminal receptor domain (RD) that mediates toxin binding to the eukaryotic cell receptor. The receptor-binding domain is composed of about forty RTX motifs organized in five successive blocks (I to V). The RTX blocks are separated by non-RTX flanking regions of variable lengths. It has been shown that block V with its N- and C-terminal flanking regions constitutes an autonomous subdomain required for the toxicity of CyaA. Here, we investigated the calcium-induced biophysical changes of this subdomain to identify the respective contributions of the flanking regions to the folding process of the RTX motifs. We showed that the RTX polypeptides, in the absence of calcium, exhibited the hallmarks of intrinsically disordered proteins and that the C-terminal flanking region was critical for the calcium-dependent folding of the RTX polypeptides, while the N-terminal flanking region was not involved. Furthermore, the secondary and tertiary structures were acquired concomitantly upon cooperative binding of several calcium ions. This suggests that the RTX polypeptide folding is a two-state reaction, from a calcium-free unfolded state to a folded and compact conformation, in which the calcium-bound RTX motifs adopt a β-roll structure. The relevance of these results to the toxin physiology, in particular to its secretion, is discussed.  相似文献   
56.

Background and aims

The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation.

Methods

Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting.

Results

mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16.

Conclusions

This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.  相似文献   
57.
Attachment to epithelial cells in the respiratory tract is a key event in Bordetella pertussis colonization. Filamentous haemagglutinin (FHA) is an important virulence factor mediating adhesion to host cells. In this study, the relevance of the interaction between FHA and adenylate cyclase toxin (ACT) during bacterial attachment was investigated. Mutants lacking either FHA or ACT showed significantly decreased adherence to epithelial respiratory cells. The use of several ACT-specific monoclonal antibodies and antiserum showed that the decrease in attachment of strains lacking ACT expression could not be explained by the adhesin-like activity of ACT, or a change of any of the biological activities of ACT. Immunoblot analysis showed that the lack of ACT expression did not interfere with FHA localization. An heparin-inhibitable carbohydrate-binding site is crucial in the process of FHA-mediated bacterial binding to epithelial cells. In the presence of heparin attachment of wild-type B. pertussis, but not of the isogenic ACT defective mutant, to epithelial cells was significantly decreased. These results suggest that ACT enhances the adhesive functions of FHA, and modifies the performance of the FHA heparin-inhibitable carbohydrate binding site. We propose that the presence of ACT in the outer membrane of B. pertussis to play a role in the functionality of FHA.  相似文献   
58.
Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes   总被引:1,自引:0,他引:1  
Recent studies have demonstrated the potential of pesticides to either inhibit or induce xenobiotic metabolizing enzymes in humans. Exposure of human hepatocytes to doses of fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazole-3-carbonitrile) ranging from 0.1 to 25 microM resulted in a dose dependent increase in CYP1A1 mRNA expression (3.5 to approximately 55-fold) as measured by the branched DNA assay. In a similar manner, CYP3A4 mRNA expression was also induced (10-30-fold), although at the higher doses induction returned to near control levels. CYP2B6 and 3A5 were also induced by fipronil, although at lower levels (2-3-fold). Confirmation of bDNA results were sought through western blotting and/or enzyme activity assays. Western blots using CYP3A4 antibody demonstrated a dose responsive increase from 0.5 to 1 microM followed by decreasing responses at higher concentrations. Similar increases and decreases were observed in CYP3A4-specific activity levels as measured using 6beta-hydroxytestosterone formation following incubation with testosterone. Likewise, activity levels for a CYP1A1-specific substrate, luciferin CEE, demonstrated that CYP1A1 enzyme activities were maximally induced by 1 microM fipronil followed by dramatically declining activity measurements at 10 and 25 microM. Cytotoxic effects of fipronil and fipronil sulfone were examined using the adenylate kinase and the trypan blue exclusion assays in HepG2 cells and human hepatocytes. The results indicate both that HepG2 cells and primary human hepatocytes are sensitive to the cytotoxic effects of fipronil. The maximum induction of adenylate kinase was ca. 3-fold greater than the respective controls in HepG2 and 6-10-fold in the case of primary hepatocytes. A significant time- and dose-dependent induction of adenylate kinase activity in HepG2 cells was noted from 0.1 to 12.5 microM fipronil followed by decreasing activities at 25 and 50 microM. For fipronil sulfone, cytotoxic effects increased throughout the dose range. The trypan blue assay indicated that cytotoxic effects contributing to an increase of greater than 10% of control values was indicated at doses above 12.5 microM. However, fipronil sulfone induced cytotoxic effects at lower doses. The possibility that cytotoxic effects were due to apoptosis was indicated by significant time- and dose-dependent induction of caspase-3/7 activity in both HepG2 cells and human hepatocytes. Fipronil mediated activation of caspase-3/7 in concurrence with compromised ATP production and viability are attributed to apoptotic cell death.  相似文献   
59.
Impairment of carbon metabolism induced by the herbicide glyphosate   总被引:1,自引:0,他引:1  
The herbicide glyphosate reduces plant growth and causes plant death by inhibiting the biosynthesis of aromatic amino acids. The objective of this work was to determine whether glyphosate-treated plants show a carbon metabolism pattern comparable to that of plants treated with herbicides that inhibit branched-chain amino acid biosynthesis. Glyphosate-treated plants showed impaired carbon metabolism with an accumulation of carbohydrates in the leaves and roots. The growth inhibition detected after glyphosate treatment suggested impaired metabolism that impedes the utilization of available carbohydrates or energy at the expected rate. These effects were common to both types of amino acid biosynthesis inhibitors. Under aerobic conditions, ethanolic fermentative metabolism was enhanced in the roots of glyphosate-treated plants. This fermentative response was not related to changes in the respiratory rate or to a limitation of the energy charge. This response, which was similar for both types of herbicides, might be considered a general response to stress conditions.  相似文献   
60.
We investigated whether pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) ameliorates kidney injury after ischemia/reperfusion (IR) by modulating Toll-like receptor (TLR)-associated signaling pathways. Male C57BL/6 mice were subjected to bilateral renal ischemia for 45 min. PACAP38, 20 μg in 100 μl of saline, was administered i.p. at 24 and 48 h after IR, and mice were euthanized at 72 h. In IR mice, PACAP38 maintained serum creatinine near control levels (0.81 ± 0.08 vs. 0.69 ± 0.17 mg/dl in controls, p = NS, vs. 1.8 ± 0.03 in saline-treated IR mice, p < 0.01) and significantly reduced the expression of kidney injury biomarkers. PACAP38 significantly reduced the levels of apoptosis and neutrophil infiltration, and protected against tubular damage. With PCR arrays, 59 of 83 TLR-related genes significantly changed their expression after IR. TLR2 increased 162 fold, followed by Fas-associated death domain (37 fold) and TLR6 (24 fold), while ubiquitin-conjugating enzyme E2 variant 1 (UBE2V1) decreased 55 fold. PACAP38 given 24 and 48 h after IR injury significantly reversed these changes in 56 genes, including TLR2, TLR3, TLR4, TLR6, and genes in the NF-κB pathways. The alterations in TLR2, TLR3, TLR6, and UBE2V1 were confirmed by RT-PCR. After IR, PACAP38 also suppressed protein levels of TLR-associated cytokines. PACAP38 reversed the changes in IR-activated TLR-associated NF-κB signaling pathways even when treatment was delayed 24 h. Therefore, PACAP38 could be an effective therapeutic for unexpected IR-mediated renal injury. The prominently IR-induced TLR-related genes identified in this study could be novel drug targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号