首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2131篇
  免费   44篇
  国内免费   70篇
  2024年   2篇
  2023年   30篇
  2022年   48篇
  2021年   45篇
  2020年   27篇
  2019年   83篇
  2018年   96篇
  2017年   64篇
  2016年   56篇
  2015年   92篇
  2014年   134篇
  2013年   200篇
  2012年   137篇
  2011年   126篇
  2010年   110篇
  2009年   92篇
  2008年   86篇
  2007年   114篇
  2006年   95篇
  2005年   107篇
  2004年   40篇
  2003年   42篇
  2002年   38篇
  2001年   24篇
  2000年   31篇
  1999年   32篇
  1998年   22篇
  1997年   17篇
  1996年   16篇
  1995年   13篇
  1994年   9篇
  1993年   11篇
  1992年   25篇
  1991年   11篇
  1990年   4篇
  1989年   14篇
  1988年   14篇
  1987年   7篇
  1986年   6篇
  1985年   12篇
  1984年   25篇
  1983年   9篇
  1982年   16篇
  1981年   12篇
  1980年   12篇
  1979年   18篇
  1978年   12篇
  1977年   3篇
  1976年   4篇
  1971年   1篇
排序方式: 共有2245条查询结果,搜索用时 31 毫秒
101.
【背景】研究发现铜绿假单胞菌(Pseudomonas aeruginosa)与(氧化)低密度脂蛋白(Low density lipoprotein,LDL/oxidized low density lipoprotein,ox LDL)具有特异性相互作用,有报道证实P. aeruginosa表达的Rah U蛋白可以与LDL/ox LDL特异性结合。【目的】验证Rah U蛋白是否是P.aeruginosa表面主要的LDL/ox LDL配体。【方法】大肠杆菌表达Rah U蛋白(r Rah U),ELISA验证r Rah U与LDL/ox LDL的相互作用。利用同源重组的方法构建RahU基因缺失突变株(ΔRahU菌株)作为阴性对照菌株,制备小鼠抗r Rah U抗体,经WesternBlot及ELISA分别检测抗r Rah U抗体与P.aeruginosa野生型菌株膜蛋白中RahU蛋白及菌体表面RahU蛋白的结合。通过ELISA方法对P. aeruginosa野生型菌株及ΔRahU菌株与LDL/ox LDL的结合差异进行比较,并对不同蛋白酶水解ΔRahU菌体表面蛋白后ΔRahU菌株与LDL/ox LDL结合能力的差异进行比较。【结果】经ELISA验证rRahU与LDL/oxLDL存在特异性结合。Western Blot及ELISA方法证实小鼠抗rRahU抗体可以与P. aeruginosa野生型菌株膜蛋白中RahU蛋白及菌体表面RahU蛋白特异性结合,而不与ΔRahU菌株相互作用。P.aeruginosa野生型菌株及ΔRahU菌株与LDL/oxLDL结合能力无显著差异,且蛋白酶水解后ΔRahU菌株与LDL/oxLDL的结合能力相近。【结论】RahU蛋白是P. aeruginosa表面的LDL/oxLDL配体之一,但不是唯一的配体。  相似文献   
102.
Atherosclerosis has been recognized as a chronic inflammatory disease, which can harden the vessel wall and narrow the arteries. MicroRNAs exhibit crucial roles in various diseases including atherosclerosis. However, so far, the role of miR-328 in atherosclerosis remains barely explored. Therefore, our study concentrated on the potential role of miR-328 in vascular endothelial cell injury during atherosclerosis. In our current study, we observed that oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) apoptosis and inhibited cell viability dose-dependently and time-dependently. In addition, indicated dosage of ox-LDL obviously triggered HUVECs inflammation and oxidative stress process. Then, it was found that miR-328 in HUVECs was reduced by ox-LDL. HUVECs apoptosis was greatly repressed and cell survival was significantly upregulated by overexpression of miR-328. Furthermore, mimics of miR-328 rescued cell inflammation and oxidative stress process induced by ox-LDL. Oppositely, inhibitors of miR-328 strongly promoted ox-LDL-induced endothelial cells injury in HUVECs. By using bioinformatics analysis, high-mobility group box-1 (HMGB1) was predicted as a downstream target of miR-328. HMGB1 has been reported to be involved in atherosclerosis development. The correlation between miR-328 and HMGB1 was validated in our current study. Taken these together, it was implied that miR-328 ameliorated ox-LDL-induced endothelial cells injury through targeting HMGB1 in atherosclerosis.  相似文献   
103.
Long noncoding RNAs (lncRNA) have been recognized as significant regulators in the progression of atherosclerosis (AS). Oxidized low-density lipoprotein (ox-LDL) can induce macrophage inflammation and oxidative stress, that serves important roles in AS. However, the exact function of lncRNA NEAT1 and its possible molecular mechanism in AS remain unclear. Here, we concentrated on the roles and molecular mechanisms of NEAT1 in AS development. In our current study, we observed that NEAT1 was elevated by ox-LDL in a dose-dependent and time-dependent manner. RAW264.7 cell survival was greatly enhanced, and cell apoptosis was significantly inhibited by LV-shNEAT1 transfection. In addition, knockdown of NEAT1 in RAW264.7 cells repressed CD36 expression and foam cell formation while NEAT1 overexpression shown an opposite process. Moreover, NEAT1 downregulation inhibited inflammation molecules including IL-6, IL-1β, and TNF-α. Meanwhile, silencing of NEAT1 can also suppress reactive oxygen species (ROS) and malondialdehyde (MDA) levels with an enhancement of superoxide dismutase (SOD) activity in RAW264.7 cells. MicroRNAs are some short RNAs, and they can regulate multiple biological functions in many diseases including AS. Here, we found that miR-128 expression was remarkably decreased in ox-LDL-incubated RAW264.7 cells. Interestingly, miR-128 mimics was able to reverse AS-correlated events induced by overexpression of NEAT1. By using bioinformatics analysis, miR-128 was predicted as a target of NEAT1 and the correlation between them was validated in our study. Taken these together, it was implied that NEAT1 participated in ox-LDL-induced inflammation and oxidative stress in AS development through sponging miR-128.  相似文献   
104.
105.
High density lipoprotein (HDL) has attracted the attention of biomedical community due to its well-documented role in atheroprotection. HDL has also been recently implicated in the regulation of islets of Langerhans secretory function and in the etiology of peripheral insulin sensitivity. Indeed, data from numerous studies strongly indicate that the functions of pancreatic β-cells, skeletal muscles and adipose tissue could benefit from improved HDL functionality. To better understand how changes in HDL structure may affect diet-induced obesity and type 2 diabetes we aimed at investigating the impact of Apoa1 or Lcat deficiency, two key proteins of peripheral HDL metabolic pathway, on these pathological conditions in mouse models. We report that universal deletion of apoa1 or lcat expression in mice fed western-type diet results in increased sensitivity to body-weight gain compared to control C57BL/6 group. These changes in mouse genome correlate with discrete effects on white adipose tissue (WAT) metabolic activation and plasma glucose homeostasis. Apoa1-deficiency results in reduced WAT mitochondrial non-shivering thermogenesis. Lcat-deficiency causes a concerted reduction in both WAT oxidative phosphorylation and non-shivering thermogenesis, rendering lcat?/? mice the most sensitive to weight gain out of the three strains tested, followed by apoa1?/? mice. Nevertheless, only apoa1?/? mice show disturbed plasma glucose homeostasis due to dysfunctional glucose-stimulated insulin secretion in pancreatic β-islets and insulin resistant skeletal muscles. Our analyses show that both apoa1?/? and lcat?/? mice fed high-fat diet have no measurable Apoa1 levels in their plasma, suggesting no direct involvement of Apoa1 in the observed phenotypic differences among groups.  相似文献   
106.

Objective

Proteoglycan 4 (Prg4) has emerged from human association studies as a possible factor contributing to weight gain, dyslipidemia and insulin resistance. In the current study, we investigated the causal role of Prg4 in controlling lipid and glucose metabolism in mice.

Methods

Prg4 knockout (KO) mice and wild-type (WT) littermates were challenged with an obesogenic high-fat diet (45% of total calories as fat) for 16?weeks. To further stimulate the development of metabolic alterations, 10% fructose water was provided starting from week 13.

Results

Prg4 deficiency only tended to reduce diet-induced body weight gain, but significantly improved glucose handling (AUC: ?29%; p?<?0.05), which was also reflected by a tendency towards a reduced HOMA-IR score (?49%; p?=?0.06 as compared to WT mice). This coincided with lower hepatic expression of glycolysis (Gck: ?30%; p?<?0.05) and lipogenesis (Acc: ?21%; p?<?0.05 and Scd1: ?38%; p?<?0.001) genes, which translated in significantly lower hepatic triglyceride levels (?56%; p?<?0.001) in Prg4 KO mice as compared to WT mice. Prg4 KO mice likely had lower glucose utilization by skeletal muscle as compared to WT mice, judged by a significant reduction in the genes Glut4 (?29%; p?<?0.01), Pfkm (?21%; p?<?0.05) and Hk2 (?39%; p?<?0.001). Moreover, Prg4 KO mice showed a favorable white adipose tissue phenotype with lower uptake of triglyceride-derived fatty acids (?46%; p?<?0.05) and lower gene expression of inflammatory markers Cd68, Mcp1 and Tnfα (?65%, ?81% and ?63%, respectively; p?<?0.01) than WT mice.

Conclusion

Prg4 KO mice are protected from high-fat diet-induced glucose intolerance and fatty liver disease.  相似文献   
107.
Translocator protein (TSPO) is a high-affinity cholesterol- and drug-binding mitochondrial protein. Nuclear receptor subfamily 5 group A member 1 or steroidogenic factor 1 (Nr5a1)-Cre mice were previously used to generate steroidogenic cell-specific Tspo gene conditional knockout (cKO) mice. TSPO-depleted homozygotes showed no response to adrenocorticotropic hormone (ACTH) in stimulating adrenal cortex corticosterone production but showed increased epinephrine synthesis in the medulla. No other phenotype was observed under normal growth conditions. During these studies, we noted that pairing two cKO mice resulted in the generation of small pups. These pups showed low growth rate at weaning, which has been linked to the development of type 2 diabetes (T2D) in adulthood. Experimental verification of T2D symptoms via blood testing of the adult mice, including glycated hemoglobin and insulin C-peptide measurements, showed that these Tspo cKO mice exhibited sustained hyperglycemia, a sign of prediabetes, likely due to the augmentation of hepatic glucose production mediated by the increased epinephrine. We also observed increased expression of the S100a8 gene, which is upregulated after chronic glucose stimulation. Taken together, the observed prediabetes phenotype and lack of response to ACTH indicate that Tspo cKO mice (Nr5a1-Cre+/?, Tspofl/fl) could provide a useful model to study the link between diabetes and stress.  相似文献   
108.
The haemagglutinating activity of larval haemolymph of Leptinotarsa decemlineata against red blood cells of various origins has been examined. This activity appeared to be unspecific, since all the different types of erythrocytes were agglutinated by a haemolymph dilution of 1128 to 1512. Only horse erythrocytes were agglutinated to a greater degree (13200. Red blood cells became much more sensitive after treatment with trypsin, while formol fixation also resulted in a better agglutinability. Sulphated polysacchrides (heparin, mucin, dextran sulphate) were good inhibitors of the haemagglutination reaction. A weaker inhibition was obtained with hexosamines. As demonstrated by immunoelectrophoresis, two haemagglutinins occur in larval haemolymph. One is specific for larvae and pupae, and is therefore called the larval-pupal haemagglutinin. It is absent in adults. The second haemagglutinin is the well-known chromoprotein 2, which is present in all developmental stages, including the egg, where it constitutes an important element of yolk proteins. The affinity of chromoprotein 2 toward dextran sulphate was confirmed by precipitation tests in agarose.  相似文献   
109.
The apolipoprotein E (apoE)-derived peptide (141-155)2 has a neurotoxic effect, implying that apoE itself could be a source of toxicity in Alzheimer's disease brain. We characterized the toxicity of this peptide on superior cervical ganglion (SCG) neurons and compared the death with the apoptotic death that occurs after nerve growth factor (NGF) deprivation in these cells. A dose of 10 microM apoE (141-155)2 resulted in the death of approximately 50% of the neurons within 24 h. Nuclear condensation and DNA fragmentation preceded the death. However, most inhibitors of NGF deprivation-induced death, including the caspase inhibitor Boc-aspartyl(O-methyl)fluoromethyl ketone and genetic deletion of bax-/-, had no effect on the toxicity. Inclusion of depolarizing levels of potassium did block the toxicity. Receptor-associated peptide (RAP), an antagonist for apoE receptors, did not protect cells in either SCG or hippocampal cultures. In addition, RAP had no effect on internalization of the apoE peptide. These data support the observation that apoE (141-155)2 is neurotoxic but suggest that the neurotoxicity is distinct from classical apoptosis or necrosis. Furthermore, these results indicate that the toxic effect may occur independently of members of the low-density lipoprotein receptor gene family.  相似文献   
110.
Phospholipid transfer protein (PLTP) belongs to a family of human plasma lipid transfer proteins that bind to small amphophilic molecules. PLTP contains cysteines at residues 5, 129, 168, and 318. Bactericidal/permeability-increasing protein, which is a member of the same gene family, contains an essential disulfide bond between Cys135 and Cys175; these residues, which correspond to Cys129 and Cys168 in PLTP, are conserved among all known members of the gene family. To identify the importance of these and the remaining cysteine residues to PLTP secretion and activity, each was replaced by a glycine by site-directed mutagenesis. The mutant as well as wild-type PLTP cDNAs were cloned into the mammalian expression vector pSV·SPORT1, and the PLTP cDNAs were transfected to COS-6 cells for expression. PLTP Cys129 Gly and PLTP Cys168 Gly were secretion incompetent. Neither PLTP mass nor activity was detectable in cell lysates and culture medium. Relative to wild-type PLTP, PLTP Cys5 Gly and PLTP Cys318 Gly exhibited similar specific activities but partially impaired PLTP synthesis and secretion. Intracellular PLTP appeared as two bands of 75 and 51 kDa corresponding to reported molecular masses for the glycosylated and nonglycosylated forms. The specific activities of PLTP Cys5 Gly and PLTP Cys318 Gly were similar in the cell lysates and medium, suggesting that glycosylation does not affect transfer activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号