首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13423篇
  免费   1725篇
  国内免费   896篇
  2024年   47篇
  2023年   183篇
  2022年   259篇
  2021年   323篇
  2020年   597篇
  2019年   662篇
  2018年   752篇
  2017年   573篇
  2016年   625篇
  2015年   603篇
  2014年   700篇
  2013年   1038篇
  2012年   482篇
  2011年   607篇
  2010年   492篇
  2009年   552篇
  2008年   609篇
  2007年   618篇
  2006年   595篇
  2005年   581篇
  2004年   440篇
  2003年   450篇
  2002年   423篇
  2001年   313篇
  2000年   268篇
  1999年   257篇
  1998年   300篇
  1997年   237篇
  1996年   185篇
  1995年   216篇
  1994年   194篇
  1993年   163篇
  1992年   179篇
  1991年   160篇
  1990年   138篇
  1989年   145篇
  1988年   130篇
  1987年   108篇
  1986年   91篇
  1985年   132篇
  1984年   130篇
  1983年   82篇
  1982年   91篇
  1981年   76篇
  1980年   70篇
  1979年   54篇
  1978年   34篇
  1977年   26篇
  1976年   23篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 307 毫秒
151.
Using Greene's melanoma transplanted into Syrian (golden) hamsters, we determined the relative biological effectiveness (RBE) of thermal neutron capture therapy (TNCT) using 10B-paraboronophenylalanine (10B-BPA) in comparison with a 9-MeV electron beam. We also obtained the RBE of the 10B(n,α)7Li reaction by calculation based on summed dose data from TNCT. Throughout this study, the Kyoto University Research Reactor was used as the source for thermal neutrons; the reactor was specially altered to attain a low contamination level both for gamma-rays and fast neutrons. 10B-BPA was administered 8 hours before thermal neutron irradiation to the hamsters with melanoma. The tumor was then irradiated at 5 MW for 90 minutes. The absorbed dose from this TNCT was calculated by the method of Fairchild and Goodman (Phys. Med. Biol. 1966; 2:15–30). The RBEs of the TNCT and the 10B(n,α)7Li reaction obtained by the tumor growth delay time (TGDT) method were 2.22 and 2.51, respectively, at 10.5 days of TGDT. These RBE values varied with TGDT and the absorbed dose. The RBE value of TNCT had a peak at 7.0 days of TGDT; that of the 10B(n,α)7Li reaction was higher at a low absorbed dose level and lower at a high absorbed dose level.  相似文献   
152.
香蕉低温酶促褐变   总被引:3,自引:0,他引:3  
7℃低温导致香蕉果皮变褐,褐变程度可用提取液的OD_(450)值表示。随低温处理时间的延长,OD_(450)增大;还原性物质抗坏血酸、谷胱甘肽含量迅速下降;多酚氧化酶底物多巴胺先有增加,接着降低。 低温下,多酚氧化酶(PPO)、过氧化物酶(POD)和过氧化氢酶(CAT)活性较常温低,PPO和POD的游离态酶活性增高。此外,H_2O_2处理加速果皮变褐,刺激PPO及POD活性;棓酸丙酯处理起相反的效应。故认为香蕉低温褐变是低温损伤、酶促褐变引起的一个复杂过程。  相似文献   
153.
T Noguti  N Go 《Proteins》1989,5(2):104-112
Conformational fluctuations in a globular protein, bovine pancreatic trypsin inhibitor, in the time range between picoseconds and nanoseconds are studied by a Monte Carlo simulation method. Multiple energy minima are derived from sampled conformations by minimizing their energy. They are distributed in clusters in the conformational space. A hierarchical structure is observed in the simulated dynamics. In the time range between 10(-14) and 10(-10) seconds dynamics is well represented by a superposition of vibrational motions within an energy well with transitions among minima within each cluster. Transitions among clusters take place in the time range of nanoseconds or longer.  相似文献   
154.
Refinement of distance geometry (DG) structures of EETI-II (Heitz et al.: Biochemistry 28:2392-2398, 1989), a member of the squash family trypsin inhibitor, have been carried out by restrained molecular dynamics (RMD) in water. The resulting models show better side chain apolar/polar surface ratio and estimated solvation free energy than structures refined "in vacuo." The consistent lower values of residual NMR constraint violations, apolar/polar surface ratio, and solvation free energy for one of these refined structures allowed prediction of the 3D folding and disulfide connectivity of EETI-II. Except for the few first residues for which no NMR constraints were available, this computer model fully agreed with X-ray structures of CMTI-I (Bode et al.: FEBS Lett. 242:285-292, 1989) and EETI-II complexed with trypsin that appeared after the RMD simulation was completed. Restrained molecular dynamics in water is thus proved to be highly valuable for refinement of DG structures. Also, the successful use of apolar/polar surface ratio and of solvation free energy reinforce the analysis of Novotny et al. (Proteins 4:19-30, 1988) and shows that these criteria are useful indicators of correct versus misfolded models.  相似文献   
155.
Summary The changes in Na current during development were studied in the dorsal root ganglion (DRG) cells using the whole-cell patch-clamp technique. Cells obtained from rats 1–3 and 5–8 days after birth were cultured and their Na currents were compared. On top of the two types of Na currents reported in these cells (fast-FA current and slow-S current) a new fast current was found (FN). The main characteristics of the three currents are: (i) The voltages of activation are –37, –36, and –23 mV for the FN, FA and S currents, respectively. (ii) The activation and inactivation kinetics of FN and FA currents are about five times faster than those of the S current. (iii) The voltages at which inactivation reaches 50% are –139, –75 and –23 mV for the FN, FA and S currents, respectively.The kinetics and voltage-dependent parameters of the three currents and their density do not change during the first eight days after birth. However, their relative frequency in the cells changes. In the 1–3 day-old rats the precent of cells with S, FA, and mixed S+FN currents is 22, 18, and 60% of the cells, respectively. In the 5–8 day-old, the percent of cells with S, FA, and FN+S is 10, 66 and 22%. The relative increase in the frequency of cells with FA current during development can contribute to the ease of action potential generation compared with cells with FN currents, which are almost completely inactivated under physiological conditions. The predominance of FA cells also results in a significant decrease in the relative frequency of cells with the high-threshold, slow current.Antibodies directed against a part of the S4 region of internal repeat I of the sodium channel (C 1 + , amino acids 210–223, eel channel numbering) were found to shift the voltage dependence of FA current inactivation (but not of FN or S currents) to more negative potentials. The effect was found only when the antibodies were applied externally. The results suggest that FN, FA and S types of Na currents are generated by channels, which are different in the topography of the C 1 + region in the membrane.  相似文献   
156.
An on-line microdialysis system was developed which monitored the 3,4-dihydroxyphenylalanine (DOPA) formation in the striatum during infusion of a submicromolar concentration of an L-aromatic amino-acid decarboxylase inhibitor (NSD 1015). The absence of DOPA in dialysates of 6-hydroxydopamine-pretreated rats and the disappearance of DOPA after administration of alpha-methyl-p-tyrosine indicated that the dialyzed DOPA was derived from dopaminergic nerve terminals. Next we investigated whether the steady-state DOPA concentration in striatal dialysates could be considered as an index of tyrosine hydroxylase activity. The increase in DOPA output after intraperitoneal administration of haloperidol or gamma-butyrolactone and the decrease in DOPA output after intraperitoneal administration of apomorphine are in excellent agreement with results of postmortem studies, in which a decarboxylase inhibitor was used to measure the activity of tyrosine hydroxylase. The effect of haloperidol on DOPA formation was not visible when a U-shaped cannula (0.80 mm o.d.) was used. Some methodological problems related to microdialysis of the haloperidol-induced increase in DOPA formation are discussed. We concluded that the proposed model is a powerful and reliable in vivo method to monitor tyrosine hydroxylase activity in the brain. The method is of special interest for investigating the effect of compounds which are not able to pass the blood-brain barrier. As an application of the method in the latter situation, we report the effect of infusion the neurotoxin 1-methyl-4-phenylpyridinium ion (10 mmol/L infused over 20 min) on the activity of striatal tyrosine hydroxylase.  相似文献   
157.
Because 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPP+) appears to damage the dopaminergic neuron and cause neuronal death, we characterized [3H]MPP+ binding sites in mouse brain membranes. Among several compounds tested, debrisoquin [3,4-dihydro-2(1H)-isoquinolinecarboxamidine] and some analogues were able to antagonize [3H]MPP+ binding. Debrisoquin is able to block adrenergic transmission and inhibit the activity of monoamine oxidase A (MAO-A). We found a certain correlation between the ability of these agents to displace [3H]MPP+ from its binding sites and their capacity to inhibit MAO-A activity. These data and the finding of a higher number of [3H]MPP+ binding sites in human placenta compared to mouse brain suggest that these sites may correspond to MAO-A enzymes. Recently it has been demonstrated in human brain that neurons in regions rich in catecholamines are positive for MAO-A. Accordingly, we suggest MAO-A as a possible accumulation site of MPP+ within the dopaminergic neuron. We also indicate the chemical structural requirement associated with the best binding of debrisoquin analogues with [3H]MPP+ sites. It would be reasonable to test the effects of debrisoquin-like drugs able to pass the blood-brain barrier on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity.  相似文献   
158.
The 1-methyl-4-phenylpyridinium species (MPP+) is the four-electron oxidation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and is widely assumed to be the actual neurotoxic species responsible for the MPTP-induced destruction of dopaminergic neurons. MPTP is oxidized by the enzyme monoamine oxidase-B to a dihydropyridinium intermediate which is oxidized further to MPP+, an effective inhibitor of the oxidation of the Complex I substrates glutamate/malate in isolated mitochondrial preparations. In the present study, the tetraphenylboron anion (TPB) greatly potentiated the inhibitory effects of MPP+ and other selected pyridinium species on glutamate/malate respiration in isolated mouse liver mitochondria. At 10 microM TPB, the potentiation ranged from approximately 50-fold to greater than 1,000-fold for the several pyridinium species tested. In other experiments, TPB greatly enhanced the accumulation of [3H]MPP+ by isolated mitochondrial preparations. This facilitation by TPB of MPP+ accumulation into mitochondria explains, at least in part, the potentiation by TPB of the above-mentioned inhibition of mitochondrial respiration. Moreover, TPB addition increased the amount of lactate formed during the incubation of mouse neostriatal tissue slices with MPTP and other tetrahydropyridines. The administration of TPB also potentiated the dopaminergic neurotoxicity of MPTP in male Swiss-Webster mice. All of these observations, taken together, are consistent with the premise that the inhibitory effect of MPP+ on mitochondrial respiration within dopaminergic neurons is the ultimate mechanism to explain MPTP-induced neurotoxicity.  相似文献   
159.
Summary We have investigated the ion permeability properties of sodium channels purified from eel electroplax and reconstituted into liposomes. Under the influence of a depolarizing diffusion potential, these channels appear capable of occasional spontaneous openings. Fluxes which result from these openings are sodium selective and blocked (from opposite sides of the membrane) by tetrodotoxin (TTX) and moderate concentrations of the lidocaine analogue QX-314. Low concentrations of QX-314 paradoxically enhance this channel-mediated flux. N-bromoacetamide (NBA) and N-bromosuccinimide (NBS), reagents which remove inactivation gating in physiological preparations, transiently stimulate the sodium permeability of inside-out facing channels to high levels. The rise and subsequent fall of permeability appear to result from consecutive covalent modifications of the protein. Titration of the protein with the more reactive NBS can be used to produce stable, chronically active forms of the protein. Low concentrations of QX-314 produce a net facilitation of channel activation by NBA, while higher concentrations produce block of conductance. This suggests that rates of modifications by NBA which lead to the activation of permeability are influenced by conformational changes induced by QX-314 binding.  相似文献   
160.
The effect of increasing osmotic values of the medium (mannitol) on the growth and the response mechanisms of seeds of radish ( Raphanus sativus L., cv. Ton do Rosso Quarantino) during the early phase of germination was investigated in the presence or absence of fusicoccin (FC). Decreasing the water potential in the medium inhibited the growth and the evolution of protein synthesis and enhanced H+ extrusion, net uptake of K+ and malic acid synthesis. FC, which stimulates these latter functions, counteracted the inhibitory effect of the decreasing water potential of the medium on growth and protein synthesis. Neither in the absence nor in the presence of FC did decreasing water potential of the medium enhance the synthesis of soluble sugars and amino acids to support the osmotic pressure of the seeds. The osmotic and water potentials of the seeds increased during germination. FC made the increase more rapid, while mannitol kept both potentials low. The pressure potentials of the seeds also decreased with time, and both FC and mannitol enhanced this change. If the seeds were without turgor, the development of protein synthesis was blocked. The seeds counteract the effect of decreasing water potentials in the medium by: a) enhancing H+ extrusion (and, as a consequence, wall loosening and transport mechanisms) and the synthesis of malic acid as apparent in the presence of FC; b) regulating the osmotic potentials of the cells (with a lower dilution of the osmotic compounds present in the seeds due to the diminished uptake of water); c) controlling the growth through the effects of a) and b) on the pressure potentials (internal hydrostatic pressure) of the seeds and on protein synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号