首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74711篇
  免费   19595篇
  国内免费   3256篇
  97562篇
  2024年   152篇
  2023年   705篇
  2022年   825篇
  2021年   1560篇
  2020年   4000篇
  2019年   5690篇
  2018年   5728篇
  2017年   5693篇
  2016年   5422篇
  2015年   5557篇
  2014年   5775篇
  2013年   7130篇
  2012年   5127篇
  2011年   5375篇
  2010年   4541篇
  2009年   3950篇
  2008年   4152篇
  2007年   3621篇
  2006年   3476篇
  2005年   2877篇
  2004年   2429篇
  2003年   2367篇
  2002年   2005篇
  2001年   1619篇
  2000年   1093篇
  1999年   855篇
  1998年   566篇
  1997年   580篇
  1996年   483篇
  1995年   427篇
  1994年   391篇
  1993年   412篇
  1992年   341篇
  1991年   289篇
  1990年   240篇
  1989年   240篇
  1988年   199篇
  1987年   187篇
  1986年   182篇
  1985年   218篇
  1984年   183篇
  1983年   143篇
  1982年   159篇
  1981年   140篇
  1980年   133篇
  1979年   93篇
  1978年   73篇
  1977年   50篇
  1976年   41篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
G protein‐coupled receptor kinase 2 (GRK2) plays a central role in the cellular transduction network. In particular, during chronic heart failure GRK2 is upregulated and believed to contribute to disease progression. Thereby, its inhibition offers a potential therapeutic solution to several pathological conditions. In the present study, we performed a SAR study and a NMR conformational analysis of peptides derived from HJ loop of GRK2 and able to selectively inhibit GRK2. From Ala‐scan and d ‐Ala point replacement, we found that Arg residues don't affect the inhibitory properties, while a d ‐amino acid at position 5 is key to the activity. Conformational analysis identified two β‐turns that involve N‐terminal residues, followed by a short extended region. These information can help the design of peptides and peptido‐mimetics with enhanced GRK2 inhibition properties. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 121–128, 2014.  相似文献   
992.
993.
Absolutes isolated from Viola odorata leaves, valuable materials for the flavor and fragrance industry, were studied. Violets are mainly cultivated in France and Egypt and extracted locally. The absolutes of the two origins showed different olfactory profiles both in top and heart notes, as evidenced by sensory analysis. The aims of this study were i) to characterize the volatile compounds, ii) to determine the odorant‐active ones, and iii) to identify some markers of the plant origin. Two complementary analytical methods were used for these purposes, i.e., headspace solid‐phase microextraction (HS‐SPME) using different fiber coatings followed by GC/MS analysis and gas chromatography – olfactometry/mass spectrometry (GC‐O/MS) applied to violet leaf extracts. From a total of 70 identified compounds, 61 have never been reported so far for this species, 17 compounds were characterized by both techniques (with seven among them known from the literature), 23 compounds were solely identified by HS‐SPME GC/MS (among them only two being already mentioned as components of violet absolutes in the literature), and, finally, 30 compounds were only identified by GC‐O/MS. According to the HS‐SPME GC/MS analyses, ethyl hexanoate and (2E,6Z)‐nona‐2,6‐dienol were specific volatile compounds of the sample with French origin, while (E,E)‐hepta‐2,4‐dienal, hexanoic acid, limonene, tridecane, and eugenol were specific of the samples with Egyptian origin. Additional compounds that were not detected by HS‐SPME GC/MS analysis were revealed by GC‐O analyses, some of them being markers of origin. Pent‐1‐en‐3‐ol, 3‐methylbut‐2‐enal, 2‐methoxy‐3‐(1‐methylethyl)pyrazine, 4‐ethylbenzaldehyde, β‐phenethyl formate, and 2‐methoxy‐3‐(2‐methylpropyl)pyrazine revealed to be odorant markers of the French sample, whereas cis‐rose oxide, trans‐rose oxide, and 3,5,5‐trimethylcyclohex‐2‐enone were odorant markers of the Egyptian samples.  相似文献   
994.
995.
996.
997.
The discovery of novel anticancer molecules 5F‐203 (NSC703786) and 5‐aminoflavone (5‐AMF, NSC686288) has addressed the issues of toxicity and reduced efficacy by targeting over expressed Cytochrome P450 1A1 (CYP1A1) in cancer cells. CYP1A1 metabolizes these compounds into their reactive metabolites, which are proven to mediate their anticancer effect through DNA adduct formation. However, the drug metabolite–DNA binding has not been explored so far. Hence, understanding the binding characteristics and molecular recognition for drug metabolites with DNA is of practical and fundamental interest. The present study is aimed to model binding preference shown by reactive metabolites of 5F‐203 and 5‐AMF with DNA in forming DNA adducts. To perform this, three different DNA crystal structures covering sequence diversity were selected, and 12 DNA‐reactive metabolite complexes were generated. Molecular dynamics simulations for all complexes were performed using AMBER 11 software after development of protocol for DNA‐reactive metabolite system. Furthermore, the MM‐PBSA/GBSA energy calculation, per‐nucleotide energy decomposition, and Molecular Electrostatic Surface Potential analysis were performed. The results obtained from present study clearly indicate that minor groove in DNA is preferable for binding of reactive metabolites of anticancer compounds. The binding preferences shown by reactive metabolites were also governed by specific nucleotide sequence and distribution of electrostatic charges in major and minor groove of DNA structure. Overall, our study provides useful insights into the initial step of mechanism of reactive metabolite binding to the DNA and the guidelines for designing of sequence specific DNA interacting anticancer agents. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
998.
Thermostable villin headpiece protein (HP67) consists of the N‐terminal subdomain (residues 10–41) and the autonomously folding C‐terminal subdomain (residues 42–76) which pack against each other to form a structure with a unified hydrophobic core. The X‐ray structures of the isolated C‐terminal subdomain (HP36) and its counterpart in HP67 are very similar for the hydrophobic core residues. However, fine rearrangements of the free energy landscape are expected to occur because of the interactions between the two subdomains. We detect and characterize these changes by comparing the µs‐ms time scale dynamics of the methyl‐bearing side chains in isolated HP36 and in HP67. Specifically, we probe three hydrophobic side chains at the interface of the two subdomains (L42, V50, and L75) as well as at two residues far from the interface (L61 and L69). Solid‐state deuteron NMR techniques are combined with computational modeling for the detailed characterization of motional modes in terms of their kinetic and thermodynamic parameters. The effect of interdomain interactions on side chain dynamics is seen for all residues but L75. Thus, changes in dynamics because of subdomain interactions are not confined to the site of perturbation. One of the main results is a two‐ to threefold increase in the value of the activation energies for the rotameric mode of motions in HP67 compared with HP36. Detailed analysis of configurational entropies and heat capacities complement the kinetic view of the degree of the disorder in the folded state.  相似文献   
999.
Anthracnose Citrus disease has been associated with several symptoms worldwide and it is recently compromising Citrus production in the Mediterranean area. Four species complexes are mainly involved: Colletotrichum boninense, C. acutatum, C. gloeosporioides and C. truncatum. In this study, we investigated the genetic diversity of Colletotrichum spp. in Tunisia associated with wither‐tip of twigs on Citrus. Specific primers ITS4‐CgInt allowed the identification of Cgloeosporioides species complex in all the 54 isolates, sampled from three regions and four Citrus species. Overall, our genotypic analysis using 10 SSR markers showed a moderate diversity level in Tunisian C. gloeosporioides population and highlighted that C. gloeosporioides reproduce mainly clonally. In addition, heterothallic isolates were present in our population, suggesting that the pathogen population may undergo parasexual recombinations. The highest genetic diversity in C. gloeosporioides was recorded in Nabeul and on orange, which likely constitutes the area and the host of origin for the Citrus anthracnose disease in Tunisia. In addition, no population subdivision was detected at the geographic, host species or cultivars’ origin levels. However, our study identified two genetic subpopulations and indicated a rapid C. gloeosporioides population change at temporal scale that should be further examined over several consecutive growing seasons in order to understand its population dynamics.  相似文献   
1000.
This review will focus on the role of the tumor microenvironment (TME) in the development of drug resistance in melanoma. Resistance to mitogen‐activated protein kinase inhibitors (MAPKi) in melanoma is observed months after treatment, a phenomenon that is often attributed to the incredible plasticity of melanoma cells but may also depend on the TME. The TME is unique in its cellular composition—it contains fibroblasts, immune cells, endothelial cells, adipocytes, and among others. In addition, the TME provides “non‐homeostatic” levels of oxygen, nutrients (hypoxia and metabolic stress), and extracellular matrix proteins, creating a pro‐tumorigenic niche that drives resistance to MAPKi treatment. In this review, we will focus on how changes in the tumor microenvironment regulate MAPKi resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号