首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3185篇
  免费   308篇
  国内免费   440篇
  3933篇
  2024年   11篇
  2023年   85篇
  2022年   114篇
  2021年   114篇
  2020年   133篇
  2019年   163篇
  2018年   160篇
  2017年   156篇
  2016年   177篇
  2015年   134篇
  2014年   172篇
  2013年   256篇
  2012年   176篇
  2011年   221篇
  2010年   186篇
  2009年   207篇
  2008年   201篇
  2007年   170篇
  2006年   143篇
  2005年   140篇
  2004年   125篇
  2003年   100篇
  2002年   91篇
  2001年   75篇
  2000年   47篇
  1999年   39篇
  1998年   51篇
  1997年   33篇
  1996年   24篇
  1995年   39篇
  1994年   23篇
  1993年   33篇
  1992年   22篇
  1991年   24篇
  1990年   10篇
  1989年   9篇
  1988年   8篇
  1987年   7篇
  1986年   12篇
  1985年   10篇
  1984年   3篇
  1983年   10篇
  1982年   10篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有3933条查询结果,搜索用时 10 毫秒
11.
12.
The concentrations of glucose and total reducing sugars obtained by chemical hydrolysis of three different lignocellulosic feedstocks were maximized. Two response surface methodologies were applied to model the amount of sugars produced: (1) classical quadratic least-squares fit (QLS), and (2) artificial neural networks based on radial basis functions (RBF). The results obtained by applying RBF were more reliable and better statistical parameters were obtained. Depending on the type of biomass, different results were obtained. Improvements in fit between 35% and 55% were obtained when comparing the coefficients of determination (R2) computed for both QLS and RBF methods. Coupling the obtained RBF models with particle swarm optimization to calculate the global desirability function, allowed to perform multiple response optimization. The predicted optimal conditions were confirmed by carrying out independent experiments.  相似文献   
13.
The G-protein coupled receptor CCR5 functions pathologically as the primary co-receptor for macrophage tropic (R5) strains of HIV-1. The interactions responsible for co-receptor activity are unknown. Molecular-dynamics simulations of the extracellular and adjacent transmembrane domains of CCR5 were performed with explicit solvation utilizing a rhodopsin-based homology model. The functional unit of co-receptor binding was constructed via docking and molecular-dynamics simulation of CCR5 and the variable 3 loop of gp120, which is a dominant determinant of co-receptor utilization. The variable 3 loop was demonstrated to interact primarily with the amino terminus and the second extracellular loop of CCR5, providing novel structural information regarding the co-receptor-binding site. Alanine mutants that alter chemokine binding and co-receptor activity were examined. Molecular-dynamics simulations with and without the variable 3 loop of gp120 were able to rationalize the activities of these mutants successfully, providing support for the proposed model. Based on these results, the global complex of CCR5, gp120 including the V3 loop and CD4, was investigated. The utilization of computational analysis, in combination with molecular biological data, provides a powerful approach for understanding the use of CCR5 as a co-receptor by HIV-1.  相似文献   
14.
Structural restraints provided by solid-state NMR measurements of the metarhodopsin II intermediate are combined with molecular dynamics simulations to help visualize structural changes in the light activation of rhodopsin. Since the timescale for the formation of the metarhodopsin II intermediate (> 1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from 13C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor.  相似文献   
15.
16.
由于受力后叶子立即发生运动 ,含羞草是一个研究力对于生物细胞作用的良好模型。在以往的研究中 ,人们认为此种现象与受力后渗透压改变、离子通道被激活、细胞骨架的动态变化有关。该文旨在通过观察含羞草叶片和叶柄匀浆悬浮液的应力 切变率滞后环变化 ,揭示含羞草的力学性质。在用于比较的含羞草、叶下珠和猪骨骼肌匀浆悬浮液以及水 4个系统中 ,只有含羞草系统具有明显的逆时针滞后环轨迹 ,而其它的 3个系统均不存在。以上结果提示 ,在含羞草的匀浆悬浮液系统中 ,有一种或多种物质 (可能是蛋白质和细胞骨架 )在剪切应力作用过程中由颗粒状结构向网状结构转变 ,由无序结构向有序结构转变 ,由液体结构向黏弹性状态转变 ,而当力撤除以后再缓慢恢复。  相似文献   
17.
Sternal pores are important features for identification of male thrips, especially within the subfamily Thripinae. They vary in shape, size and distribution even between species of one genus. Their functional role is speculated to be that of sex- and/or aggregation pheromone production. Yet, sexual aggregations are not reported in Echinothrips americanus, known to have sternal pores, while we observed aggregations in Megalurothrips sjostedti, previously reported to lack them.We examined the sternal glands and pores of the thripine species E. americanus and M. sjostedti males, in comparison with those of Frankliniella occidentalis using light microscopy, as well as scanning and transmission electron microscopy. Pore plates of F. occidentalis were ellipsoid and medial on sternites III–VII, while in E. americanus they were distributed as multiple micro pore plates on sternites III–VIII. In M. sjostedti they appeared as an extremely small pore in front of the posterior margin of each of sternites IV–VII. Pore plate and pore plate area were distributed similarly on sternites III–VII in F. occidentalis. However, in E. americanus the total pore plate area increased significantly from sternites III to VIII. Ultrastructure of cells associated with sternal glands showed typical characteristics of gland cells that differ in size, shape and number. The function of sternal glands is further discussed on the basis of morphological comparisons with other thrips species.  相似文献   
18.
Model-based online optimization has not been widely applied to bioprocesses due to the challenges of modeling complex biological behaviors, low-quality industrial measurements, and lack of visualization techniques for ongoing processes. This study proposes an innovative hybrid modeling framework which takes advantages of both physics-based and data-driven modeling for bioprocess online monitoring, prediction, and optimization. The framework initially generates high-quality data by correcting raw process measurements via a physics-based noise filter (a generally available simple kinetic model with high fitting but low predictive performance); then constructs a predictive data-driven model to identify optimal control actions and predict discrete future bioprocess behaviors. Continuous future process trajectories are subsequently visualized by re-fitting the simple kinetic model (soft sensor) using the data-driven model predicted discrete future data points, enabling the accurate monitoring of ongoing processes at any operating time. This framework was tested to maximize fed-batch microalgal lutein production by combining with different online optimization schemes and compared against the conventional open-loop optimization technique. The optimal results using the proposed framework were found to be comparable to the theoretically best production, demonstrating its high predictive and flexible capabilities as well as its potential for industrial application.  相似文献   
19.
The computational design of proteins that bind small molecule ligands is one of the unsolved challenges in protein engineering. It is complicated by the relatively small size of the ligand which limits the number of intermolecular interactions. Furthermore, near-perfect geometries between interacting partners are required to achieve high binding affinities. For apolar, rigid small molecules the interactions are dominated by short-range van der Waals forces. As the number of polar groups in the ligand increases, hydrogen bonds, salt bridges, cation–π, and π–π interactions gain importance. These partial covalent interactions are longer ranged, and additionally, their strength depends on the environment (e.g. solvent exposure). To assess the current state of protein-small molecule interface design, we benchmark the popular computer algorithm Rosetta on a diverse set of 43 protein–ligand complexes. On average, we achieve sequence recoveries in the binding site of 59% when the ligand is allowed limited reorientation, and 48% when the ligand is allowed full reorientation. When simulating the redesign of a protein binding site, sequence recovery among residues that contribute most to binding was 52% when slight ligand reorientation was allowed, and 27% when full ligand reorientation was allowed. As expected, sequence recovery correlates with ligand displacement.  相似文献   
20.
Molecular phylogenetic analyses were conducted to determine relationships and to investigate character evolution for the Troidini/Aristolochia interaction, in an attempt to answer the following questions: (1) what is the present pattern of use of Aristolochia by these butterflies; (2) is the pattern we see today related to the phylogeny of plants or to their chemical composition; (3) can the geographical distribution of Aristolochia explain the host plant use observed today; and (4) how did the interaction between Troidini and Aristolochia evolve? Analyses of character optimization suggest that the current pattern of host plant use of these butterflies does not seem to be constrained by the phylogeny of their food plants, neither by the secondary chemicals in these plants nor by their geographical similarity. The current host plant use in these butterflies seems to be simply opportunistic, with species with a wider geographical range using more species of host plants than those with a more restricted distribution. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 247–261.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号