首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2071篇
  免费   197篇
  国内免费   74篇
  2024年   7篇
  2023年   49篇
  2022年   42篇
  2021年   83篇
  2020年   85篇
  2019年   99篇
  2018年   72篇
  2017年   73篇
  2016年   83篇
  2015年   82篇
  2014年   94篇
  2013年   152篇
  2012年   66篇
  2011年   65篇
  2010年   67篇
  2009年   85篇
  2008年   110篇
  2007年   103篇
  2006年   81篇
  2005年   76篇
  2004年   71篇
  2003年   42篇
  2002年   49篇
  2001年   52篇
  2000年   38篇
  1999年   44篇
  1998年   36篇
  1997年   38篇
  1996年   31篇
  1995年   30篇
  1994年   35篇
  1993年   20篇
  1992年   27篇
  1991年   28篇
  1990年   27篇
  1989年   19篇
  1988年   19篇
  1987年   9篇
  1986年   21篇
  1985年   17篇
  1984年   16篇
  1983年   13篇
  1982年   17篇
  1981年   20篇
  1980年   17篇
  1979年   10篇
  1978年   4篇
  1977年   8篇
  1975年   4篇
  1973年   2篇
排序方式: 共有2342条查询结果,搜索用时 15 毫秒
991.
This study presents a biomechanical model of orthodontic tooth movement. Although such models have already been presented in the literature, most of them incorporate computationally expensive finite elements (FE) methods to determine the strain distribution in the periodontal ligament (PDL). In contrast, the biomechanical model presented in this work avoids the use of FE methods. The elastic deformation of the PDL is modelled using an analytical approach, which does not require setting up a 3D model of the tooth. The duration of the lag phase is estimated using the calculated hydrostatic stresses, and bone remodelling is predicted by modelling the alveolar bone as a viscous material. To evaluate the model, some typically used motion patterns were simulated and a sensitivity analysis was carried out on the parameters. Results show that despite some shortcomings, the model is able to describe commonly used motion patterns in orthodontic tooth movement, in both single- and multi-rooted teeth.  相似文献   
992.
While orthodontic tooth movement (OTM) gains considerable popularity and clinical success, the roles played by relevant tissues involved, particularly periodontal ligament (PDL), remain an open question in biomechanics. This paper develops a soft-tissue induced external (surface) remodeling procedure in a form of power law formulation by correlating time-dependent simulation in silico with clinical data in vivo (p<0.05), thereby providing a systematic approach for further understanding and prediction of OTM. The biomechanical stimuli, namely hydrostatic stress and displacement vectors experienced in PDL, are proposed to drive tooth movement through an iterative hyperelastic finite element analysis (FEA) procedure. This algorithm was found rather indicative and effective to simulate OTM under different loading conditions, which is of considerable potential to predict therapeutical outcomes and develop a surgical plan for sophisticated orthodontic treatment.  相似文献   
993.
Male and female mice were housed in cages, containing different types of bedding materials (wood flakes or pulp chips), from 4 weeks of age in the F0 generation to 11 weeks of age in the F1 generation; selected reproductive and neurobehavioral parameters were measured in the F1 generation. There were no adverse effects of bedding materials on litter size, litter weight, or sex ratios at the time of birth. With regard to behavioral development parameters, bedding materials did not influence any variables (p > 0.05) in both sexes. Regarding exploratory behavior in the F1 generation, number of defecations significantly varied (p = 0.0203) with bedding materials in males at 3 weeks of age. The number of horizontal activities also significantly varied (p = 0.0342) with bedding materials in males at 8 weeks of age. Multiple‐T water maze performance data indicated that the time required was significantly shortened across trials in pulp chips group than wood flakes group in males (p = 0.0211). Moreover, all spontaneous behavior variables in males significantly varied with bedding materials, particularly the average time of movement was significantly different (p = 0.0037) in distance between parallel lines of types of bedding materials in the F1 generation. The present study shows that bedding materials influence the neurobehavioral development in mice  相似文献   
994.
995.
Recent estimates reaffirm that conservation funds are insufficient to meet biodiversity conservation goals. Organisations focused on biodiversity conservation therefore need to capitalise on investments that societies make in environmental protection that provide ancillary benefits to biodiversity. Here, we undertake the first assessment of the potential ancillary benefits from the ballot box in the United States, where citizens vote on referenda to conserve lands for reasons that may not include biodiversity directly but that indirectly might enhance biodiversity conservation. Our results suggest that referenda occur in counties with significantly greater biodiversity than counties chosen at random. We also demonstrate that large potential gains for conservation are possible if the past and likely future outcomes of these ballot box measures are directly incorporated into national‐scale conservation planning efforts. The possible synergies between ballot box measures and other biodiversity conservation efforts offer an under‐utilised resource for supporting conservation.  相似文献   
996.
The dispersal and migration of organisms have resulted in the colonisation of nearly every possible habitat and ultimately the extraordinary diversity of life. Animal dispersal tendencies are commonly heterogeneous (e.g. long vs. short) and non‐random suggesting that phenotypic and genotypic variability between individuals can contribute to population‐level heterogeneity in dispersal. Using laboratory and field experiments, we demonstrate that natural allelic variation in a gene underlying a foraging polymorphism in larval fruit flies (for), also influences their dispersal tendencies as adults. Rover flies (forR; higher foraging activity) have consistently greater dispersal tendencies and are more likely to disperse longer distances than sitter flies (fors; lower foraging activity). Increasing for expression in the brain and nervous system increases dispersal in sitter flies. Our study supports the notion that variation in dispersal can be driven by intrinsic variation in food‐dependent search behaviours and confirms that single gene pleiotropic effects can contribute to population‐level heterogeneity in dispersal.  相似文献   
997.
Movement proteins (MPs) encoded by plant viruses interact with host proteins to facilitate or interfere with intra‐ and/or intercellular viral movement. Using yeast two‐hybrid and bimolecular fluorescence complementation assays, we herein present in vivo evidence for the interaction between Alfalfa mosaic virus (AMV) MP and Arabidopsis Patellin 3 (atPATL3) and Patellin 6 (atPATL6), two proteins containing a Sec14 domain. Proteins with Sec14 domains are implicated in membrane trafficking, cytoskeleton dynamics, lipid metabolism and lipid‐mediated regulatory functions. Interestingly, the overexpression of atPATL3 and/or atPATL6 interfered with the plasmodesmata targeting of AMV MP and correlated with reduced infection foci size. Consistently, the viral RNA levels increased in the single and double Arabidopsis knockout mutants for atPATL3 and atPATL6. Our results indicate that, in general, MP–PATL interactions interfere with the correct subcellular targeting of MP, thus rendering the intracellular transport of viral MP‐containing complexes less efficient and diminishing cell‐to‐cell movement.  相似文献   
998.
999.
Using scanning electron microscopy, Amoeba proteus cells migrating on the glass have been shown to develop dense coats of minipodia, which are discrete microprotrusions up to 8 microm long and approximately 0.5 microm across. They cover the middle-anterior area of the ventral cell surface, i.e. the region previously determined as the zone of most efficient adhesion of an amoeba to its substratum. Minipodia are sparse underneath the frontal zone and lacking from the tail region. In amoebae that adhere to the glass without moving, have just started moving, or show unstable motor polarity, minipodia are grouped in rosette contacts, cauliflower-like papillae composed of supporting platforms with crowns of minipodia emerging from them. Both structures abound with cytoskeletal F-actin, as shown by staining with fluorescein-conjugated phalloidin. Amoebae experimentally prevented from adhering to the substratum neither develop discrete minipodia nor rosette contacts.  相似文献   
1000.
Feeding selectivity and efficiency of young-of-the-year European perch and roach were compared under field and laboratory conditions. In laboratory experiments, the importance of prey evasiveness versus prey movement conspicuousness for fish selectivity was evaluated with respect to changing Cladocera/Copepoda prey ratio. Feeding efficiency was additionally investigated in relation to feeding time (5, 10, 20 min) and prey density (approx. 50, 200, 700 ind. L−1). In Říov Reservoir, the diet of both fish species was nearly exclusively composed of crustacean zooplankton. In roach, diet shifted from rotifers and bosminids in May, towards Daphnia sp. and Leptodora kindtii in June and July. Daphnia contributed almost exclusively to the roach diet since June, composing on average more than 94% of total prey. Cyclopoid copepods, occurred in the roach’s diet only on the first sampling date; later on both cyclopoid and calanoid copepods were completely absent. On the other hand, copepods played an important role in the diet of perch. In early and mid-June when their share in the zooplankton was particularly high, copepods contributed by more than 50% to the diet of perch. Although their contribution dropped with their decline in zooplankton in June/July, by the end of July they again comprised about one third of perch’s diet. In both fish species, the increase in numbers of cladocerans in their diet was related to increase in SL. In roach, the numbers of consumed prey were doubled every twenty days during the investigated period. In perch the increase was not so consistent, but significantly higher efficiency of perch was reported on three out of six sampling dates. In laboratory experiments, roach showed a distinct avoidance for copepods and a preference for cladocerans. Both prey categories were only fed non-selectively when they dominated the prey mixture. Perch selectivity was more diversified. Contrary to roach, perch were fed copepods non-selectively on a balanced prey ratio. Further, with an increasing share of Cladocera, a situation resembling that of roach and Copepoda was avoided. However, when the share of copepods in the prey mixture dropped below ten percent, they were consumed non-selectively and with their ongoing decline in the prey mixture their preference even increased. Feeding efficiency differed significantly between perch and roach when foraging on copepods exclusively or on a prey mixture where copepods predominated. In the short time feeding experiment (5 min) with copepods, perch consumed on average 5.9 times more prey than roach. Although roach increased their success with increasing time it was still 1.7 times greater than for perch in the long time feeding experiment (20 min). Total numbers of prey consumed were positively affected by prey density and feeding time. With increasing feeding time, the consumption rate generally declined. With a fourfold increase in feeding time, the numbers of consumed prey increased on average only two times. Only in roach feeding on copepods did the numbers of prey consumed per minute of feeding increase with increasing feeding time. However, the overall numbers were low. Differences in feeding selectivity and efficiency between perch and roach juveniles were found to be significant both in the field and laboratory experiments. In roach, selectivity was determined solely by prey evasiveness. By contrast, perch’s selectivity was influenced by prey movement conspicuousness; prey escape abilities did not play an important role. Perch were more efficient foragers on evasive prey, but its feeding efficiency for non-evasive prey was not lower than that of roach. According to our observations, we suggest feeding behaviour to be responsible for the roach’s inefficiency in capturing evasive copepods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号