首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51173篇
  免费   18365篇
  国内免费   2206篇
  71744篇
  2024年   103篇
  2023年   360篇
  2022年   330篇
  2021年   744篇
  2020年   3219篇
  2019年   4915篇
  2018年   5065篇
  2017年   4993篇
  2016年   4701篇
  2015年   4582篇
  2014年   4546篇
  2013年   5005篇
  2012年   4214篇
  2011年   4422篇
  2010年   3774篇
  2009年   2754篇
  2008年   2870篇
  2007年   2308篇
  2006年   2292篇
  2005年   1915篇
  2004年   1550篇
  2003年   1654篇
  2002年   1460篇
  2001年   1116篇
  2000年   665篇
  1999年   452篇
  1998年   193篇
  1997年   158篇
  1996年   159篇
  1995年   151篇
  1994年   145篇
  1993年   117篇
  1992年   130篇
  1991年   70篇
  1990年   71篇
  1989年   63篇
  1988年   59篇
  1987年   40篇
  1986年   45篇
  1985年   64篇
  1984年   52篇
  1983年   25篇
  1982年   52篇
  1981年   29篇
  1980年   23篇
  1979年   23篇
  1978年   19篇
  1977年   8篇
  1976年   16篇
  1975年   9篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
62.
63.
The relationships between growth rate, cell‐cycle parameters, and cell size were examined in two unicellular cyanobacteria representative of open‐ocean environments: Prochlorococcus (strain MIT9312) and Synechococcus (strain WH8103). Chromosome replication time, C, was constrained to a fairly narrow range of values (~4–6 h) in both species and did not appear to vary with growth rate. In contrast, the pre‐ and post‐DNA replication periods, B and D, respectively, decreased with increasing growth rate from maxima of ~30 and 10–20 h to minima of ~4–6 and 2–3 h, respectively. The combined duration of the chromosome replication and postreplication periods (C+D), a quantity often used in the estimation of Prochlorococcus in situ growth rates, varied ~2.4‐fold over the range of growth rates examined. This finding suggests that assumptions of invariant C+D may adversely influence Prochlorococcus growth rate estimates. In both strains, cell mass was the greatest in slowly growing cells and decreased 2‐ to 3‐fold over the range of growth rates examined here. Estimated cell mass at the start of replication appeared to decrease with increasing growth rate, indicating that the initiation of chromosome replication in Prochlorococcus and Synechococcus is not a simple function of cell biomass, as suggested previously. Taken together, our results reflect a notable degree of similarity between oceanic Synechococcus and Prochlorococcus strains with respect to their growth‐rate‐specific cell‐cycle characteristics.  相似文献   
64.
Many empirical studies motivated by an interest in stable coexistence have quantified negative density dependence, negative frequency dependence, or negative plant–soil feedback, but the links between these empirical results and ecological theory are not straightforward. Here, we relate these analyses to theoretical conditions for stabilisation and stable coexistence in classical competition models. By stabilisation, we mean an excess of intraspecific competition relative to interspecific competition that inherently slows or even prevents competitive exclusion. We show that most, though not all, tests demonstrating negative density dependence, negative frequency dependence, and negative plant–soil feedback constitute sufficient conditions for stabilisation of two‐species interactions if applied to data for per capita population growth rates of pairs of species, but none are necessary or sufficient conditions for stable coexistence of two species. Potential inferences are even more limited when communities involve more than two species, and when performance is measured at a single life stage or vital rate. We then discuss two approaches that enable stronger tests for stable coexistence‐invasibility experiments and model parameterisation. The model parameterisation approach can be applied to typical density‐dependence, frequency‐dependence, and plant–soil feedback data sets, and generally enables better links with mechanisms and greater insights, as demonstrated by recent studies.  相似文献   
65.
66.
67.
Isopeptidases are essential regulators of protein ubiquitination and sumoylation. However, only two families of SUMO isopeptidases are at present known. Here, we report an activity‐based search with the suicide inhibitor haemagglutinin (HA)‐SUMO‐vinylmethylester that led to the identification of a surprising new SUMO protease, ubiquitin‐specific protease‐like 1 (USPL1). Indeed, USPL1 neither binds nor cleaves ubiquitin, but is a potent SUMO isopeptidase both in vitro and in cells. C13orf22l—an essential but distant zebrafish homologue of USPL1—also acts on SUMO, indicating functional conservation. We have identified invariant USPL1 residues required for SUMO binding and cleavage. USPL1 is a low‐abundance protein that colocalizes with coilin in Cajal bodies. Its depletion does not affect global sumoylation, but causes striking coilin mislocalization and impairs cell proliferation, functions that are not dependent on USPL1 catalytic activity. Thus, USPL1 represents a third type of SUMO protease, with essential functions in Cajal body biology.  相似文献   
68.
Drylands encompass over 40% of terrestrial ecosystems and face significant anthropogenic degradation causing a loss of ecosystem integrity, services, and deterioration of social‐ecological systems. To combat this degradation, some dryland restoration efforts have focused on the use of biological soil crusts (biocrusts): complex communities of cyanobacteria, algae, lichens, bryophytes, and other organisms living in association with the top millimeters of soil. Biocrusts are common in many ecosystems and especially drylands. They perform a suite of ecosystem functions: stabilizing soil surfaces to prevent erosion, contributing carbon through photosynthesis, fixing nitrogen, and mediating the hydrological cycle in drylands. Biocrusts have emerged as a potential tool in restoration; developing methods to implement effective biocrust restoration has the potential to return many ecosystem functions and services. Although culture‐based approaches have allowed researchers to learn about the biology, physiology, and cultivation of biocrusts, transferring this knowledge to field implementation has been more challenging. A large amount of research has amassed to improve our understanding of biocrust restoration, leaving us at an opportune time to learn from one another and to join approaches for maximum efficacy. The articles in this special issue improve the state of our current knowledge in biocrust restoration, highlighting efforts to effectively restore biocrusts through a variety of different ecosystems, across scales and utilizing a variety of lab and field methods. This collective work provides a useful resource for the scientific community as well as land managers.  相似文献   
69.
Root border cells take up and release glucose-C   总被引:6,自引:0,他引:6  
BACKGROUND AND AIMS: Border cells are released from the root tips of many plant species, and can remain viable in the rhizosphere for 1 week. Whether border cells are capable of controlled glucose exchange with their environment was investigated. METHODS: Border cells were removed from Zea mays L. root tips, and immersed in (14)C-labelled D-glucose. In one experiment, the hexose transport inhibitor, phlorizin, was used to investigate active glucose uptake from a range of glucose concentrations. In another experiment, glucose efflux from border cells was monitored over time. KEY RESULTS: Glucose uptake by the border cells increased with increasing glucose concentration from 0.2 to 20 mm. At 0.2 mm glucose, uptake was mainly active, as evidenced by the approx. 60 % inhibition with phlorizin. At 2 and 20 mm glucose, however, uptake was mainly via diffusion, as phlorizin inhibition was negligible. Glucose efflux increased with time for live border cells in both 2 and 20 mm glucose. There was no clear efflux/time pattern for heat-killed border cells. CONCLUSIONS: Border cells actively take up glucose, and also release it. Under our experimental conditions, glucose uptake and efflux were of similar order of magnitude. In the rhizosphere net glucose exchange will almost certainly depend on local soil conditions.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号