全文获取类型
收费全文 | 465篇 |
免费 | 58篇 |
国内免费 | 33篇 |
专业分类
556篇 |
出版年
2024年 | 2篇 |
2023年 | 17篇 |
2022年 | 14篇 |
2021年 | 28篇 |
2020年 | 27篇 |
2019年 | 24篇 |
2018年 | 29篇 |
2017年 | 17篇 |
2016年 | 21篇 |
2015年 | 26篇 |
2014年 | 32篇 |
2013年 | 33篇 |
2012年 | 34篇 |
2011年 | 23篇 |
2010年 | 33篇 |
2009年 | 35篇 |
2008年 | 24篇 |
2007年 | 22篇 |
2006年 | 12篇 |
2005年 | 16篇 |
2004年 | 7篇 |
2003年 | 10篇 |
2002年 | 8篇 |
2001年 | 3篇 |
2000年 | 9篇 |
1999年 | 6篇 |
1998年 | 6篇 |
1997年 | 11篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1994年 | 5篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 3篇 |
1989年 | 3篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有556条查询结果,搜索用时 31 毫秒
81.
82.
83.
84.
Dorothy A. Lerit Karen M. Plevock Nasser M. Rusan 《Journal of visualized experiments : JoVE》2014,(89)
Stem cells divide asymmetrically to generate two progeny cells with unequal fate potential: a self-renewing stem cell and a differentiating cell. Given their relevance to development and disease, understanding the mechanisms that govern asymmetric stem cell division has been a robust area of study. Because they are genetically tractable and undergo successive rounds of cell division about once every hour, the stem cells of the Drosophila central nervous system, or neuroblasts, are indispensable models for the study of stem cell division. About 100 neural stem cells are located near the surface of each of the two larval brain lobes, making this model system particularly useful for live imaging microscopy studies. In this work, we review several approaches widely used to visualize stem cell divisions, and we address the relative advantages and disadvantages of those techniques that employ dissociated versus intact brain tissues. We also detail our simplified protocol used to explant whole brains from third instar larvae for live cell imaging and fixed analysis applications. 相似文献
85.
86.
87.
Protective immunity induced by an intranasal multivalent vaccine comprising 10 Lactococcus lactis strains expressing highly prevalent M‐protein antigens derived from Group A Streptococcus 下载免费PDF全文
Aniela Wozniak Natalia Scioscia Patricia C. García James B. Dale Braulio A. Paillavil Paulette Legarraga Francisco J. Salazar‐Echegarai Susan M. Bueno Alexis M. Kalergis 《Microbiology and immunology》2018,62(6):395-404
88.
Todd R. Caplan Kristin Cothern Cliff Landers Ondrea C. Hummel 《Restoration Ecology》2013,21(5):627-638
A common approach to re‐establishing cottonwood–willow habitat along regulated rivers is through installing dormant, rootless cuttings, yet there is little published information exploring floodplain characteristics that optimize growth of southwestern riparian willows planted in this manner. The goal of this project was to evaluate relationships between growth attributes of Salix exigua and soil texture and soil water availability. Monitoring plots were established in five willow swales planted with dormant S. exigua cuttings along the banks of the Middle Rio Grande in central New Mexico. Data analysis revealed significantly higher aerial cover, height, and stem density for S. exigua plants installed in plots with intermediate levels (15–25%) of fine textured soils distributed through the soil profile. Similar relationships were found in relation to soil water availability. Regression analysis of percent fines and available water at different depth increments provided limited explanation of variability in willow growth attributes at different plots. Findings indicate that S. exigua plants established from cuttings can achieve heights and aerial cover values similar to naturally established willow bars if the floodplain soil profile contains intermediate levels of fine textured soils and the maximum depth to groundwater is within 1.5 m of the ground surface. Where sites are dominated by coarse sand, S. exigua growth may be improved if maximum depth to groundwater is within 1 m of the ground surface. 相似文献
89.
In this work, we present a proof‐of‐principle experiment that extends advanced live cell microscopy to the scale of pool‐generated strain libraries. We achieve this by identifying the genotypes for individual cells in situ after a detailed characterization of the phenotype. The principle is demonstrated by single‐molecule fluorescence time‐lapse imaging of Escherichia coli strains harboring barcoded plasmids that express a sgRNA which suppresses different genes in the E. coli genome through dCas9 interference. In general, the method solves the problem of characterizing complex dynamic phenotypes for diverse genetic libraries of cell strains. For example, it allows screens of how changes in regulatory or coding sequences impact the temporal expression, location, or function of a gene product, or how the altered expression of a set of genes impacts the intracellular dynamics of a labeled reporter. 相似文献
90.