首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6820篇
  免费   484篇
  国内免费   261篇
  2024年   19篇
  2023年   124篇
  2022年   175篇
  2021年   203篇
  2020年   176篇
  2019年   244篇
  2018年   289篇
  2017年   208篇
  2016年   217篇
  2015年   263篇
  2014年   292篇
  2013年   748篇
  2012年   202篇
  2011年   250篇
  2010年   230篇
  2009年   251篇
  2008年   259篇
  2007年   310篇
  2006年   311篇
  2005年   292篇
  2004年   227篇
  2003年   204篇
  2002年   200篇
  2001年   177篇
  2000年   135篇
  1999年   121篇
  1998年   117篇
  1997年   126篇
  1996年   107篇
  1995年   113篇
  1994年   79篇
  1993年   71篇
  1992年   95篇
  1991年   62篇
  1990年   59篇
  1989年   68篇
  1988年   64篇
  1987年   65篇
  1986年   52篇
  1985年   60篇
  1984年   71篇
  1983年   43篇
  1982年   54篇
  1981年   39篇
  1980年   26篇
  1979年   24篇
  1978年   11篇
  1977年   6篇
  1976年   9篇
  1975年   5篇
排序方式: 共有7565条查询结果,搜索用时 296 毫秒
101.
Antioxidant enzyme activities in embryologic and early larval stages of turbot   总被引:15,自引:0,他引:15  
The antioxidant enzymes superoxide dismutase (SOD; EC 1.15.1.1), catalase (EC 1.11.1.6), selenium-dependent glutathione peroxidase (SeGPX; EC 1.11.1.9), glutathione reductase (EC 1.6.4.2) and DT-diaphorase (EC 1.6.99.2), plus total GPX activity (sum of SeGPX and Se-independent GPX activities), were studied in 13 500 g supernatants of embryos and 3-day and 11-day post-hatch larvae of turbot Scophthalmus maximus L. SOD activity decreased progressively during development from embryos to 11-day-old larvae, indicative of a decreased need to detoxify superoxide anion radical (O2). In contrast, catalase, SeGPX and glutathione reductase activities increased progressively from embryos to 11-day-old larvae, indicative of an increased need to metabolize hydrogen peroxide (H2O2) and organic peroxides. Consistent with the latter changes, levels of lipid peroxides (i.e. thiobarbituric acid reactive substances) increased 13-fold from embryos to 3-day-old larvae, whilst total peroxidizable lipid was indicated to decrease. Increases were seen for NADPH-dependent DT-diaphorase (after hatching) and total GPX (between 3 and 11 days post-hatch) activities, whilst no change was found in NADH-dependent DT-diaphorase activity. Overall, the results demonstrate a capacity for early life-stages of S. maximus to detoxify reactive oxygen species (O2 and H2O2) and other pro-oxidant compounds (organic peroxides, redox cycling chemicals). Furthermore, qualitative and quantitative antioxidant changes occur during hatching and development, possibly linked to such events as altered respiration rates (SOD changes) and tissue reorganization and development (catalase, SeGPX, lipid peroxidation).  相似文献   
102.
The effects of nitrogen starvation in the presence or absence of sodium in the culture medium were monitored in batch cultures of the marine diatom Phaeodactylum tricornutum Bohlin. During nitrogen starvation in the presence of sodium, cell nitrogen and chlorophyll a decreased, mainly as a consequence of continued cell division. These decreases were accompanied by decreases in the rates of photosynthesis and respiration. There was no change in either cell volume or carbohydrate, but both carbon and lipid increased. During nitrogen starvation in the absence of sodium, cell division ceased. Cell nitrogen and chlorophyll a remained constant, and respiration did not decrease, but the changes in the photosynthetic rate and the lipid content per cell were similar to cultures that were nitrogen-starved in the presence of sodium. The carbon-to-nitrogen ratio increased in both cultures. Nitrogen, in the form of nitrate, and sodium were resupplied to cultures that had been preconditioned in nitrogen- and sodium-deficient medium for 5 d. Control cultures to which neither nitrate or sodium were added remained in a static state with respect to cell number, volume, and carbohydrate but showed slight increases in lipid. Cells in cultures to which 10 mM nitrate alone was added showed a similar response to cultures where no additions were made. Cells in cultures to which 50 mM sodium alone was added divided for 2 d, with concomitant small decreases in all measured constituents. Cell division resumed in cultures to which both sodium and nitrate were added. The lipid content fell dramatically in these cells and was correlated to metabolic oxidation via measured increases in the activity of the glyoxylate cycle enzyme, isocitrate lyase. We conclude that lipids are stored as a function of decreased growth rate and are metabolized to a small extent when cell division resumes. However, much higher rates of metabolism occur if cell division resumes in the presence of a nitrogen source.  相似文献   
103.
Abstract. The objectives of this study were to determine whether adult Mediterranean fruit flies, Ceratitis capitata Wiedeman (Diptera: Tephritidae), are capable of synthesizing lipids, and whether adult diet affects this ability.Lipid levels in females fed protein and carbohydrate or carbohydrate alone declined significantly from emergence to the fourth day of life and then rose back to teneral levels on the fifth day, before oviposition took place on the sixth day.In males fed protein and carbohydrate, lipid levels initially declined as males aged and then stabilized.In carbohydrate-fed males lipid levels declined following emergence and recovered somewhat by the sixth day.Lipid levels declined significantly when flies underwent post-emergence starvation, but after substantial feeding on the above-mentioned diets they eventually (within 6–7 days) reached teneral levels in all experimental groups.Multivariate analysis of variance revealed that differences in lipid contents are primarily related to the flies' age, which corresponds to the various sex-specific activities these flies exhibit.Average lipid investment in eggs was found to equal teneral lipid levels in females.Without lipogenic abilities, oviposition would completely deplete female lipid reserves.We conclude that adult medflies are capaple of lipid synthesis, and that this capability is modulated by individual and sex-specific activity patterns.  相似文献   
104.
The major protein in the sarcoplasmic reticulum (SR) membrane is the Ca2+ transporting ATPase which carries out active Ca2+ pumping at the expense of ATP hydrolysis. The aim of this work was to elucidate the mechanisms by which oxidative stress induced by Fenton's reaction (Fe2+ + H2O2 HO· + OH+ Fe3+) alters the function of SR. ATP hydrolysis by both SR vesicles (SRV) and purified ATPase was inhibited in a dose-dependent manner in the presence of 0–1.5 MM H2O2 plus 50 M Fe2+ and 6 mM ascorbate. Ca2+ uptake carried out by the Ca2+-ATPase in SRV was also inhibited in parallel. The inhibition of hydrolysis and Ca2+ uptake was not prevented by butylhydroxytoluene (BHT) at concentrations which significantly blocked formation of thiobarbituric acid-reactive substances (TBARS), suggesting that inhibition of the ATPase was not due to lipid peroxidation of the SR membrane. In addition, dithiothreitol (DTT) did not prevent inhibition of either ATPase activity or Ca2+ uptake, suggesting that inhibition was not related to oxidation of ATPase thiols. The passive efflux of 45Ca2+ from pre-loaded SR vesicles was greatly increased by oxidative stress and this effect could be only partially prevented (ca 20%) by addition of BHT or DTT. Trifluoperazine (which specifically binds to the Ca2+-ATPase, causing conformational changes in the enzyme) fully protected the ATPase activity against oxidative damage. These results suggest that the alterations in function observed upon oxidation of SRV are mainly due to direct effects on the Ca2+-ATPase. Electrophoretic analysis of oxidized Ca2+-ATPase revealed a decrease in intensity of the silver-stained 110 kDa Ca2+-ATPase band and the appearance of low molecular weight peptides (MW < 100 kDa) and high molecular weight protein aggregates. Presence of DTT during oxidation prevented the appearance of protein aggregates and caused a simultaneous increase in the amount of low molecular weight peptides. We propose that impairment of function of the Ca2+-pump may be related to aminoacid oxidation and fragmentation of the protein.Abbreviations AcP acetylphosphate - BHT butylhydroxytoluene - DTT dithiothreitol - Hepes 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - SDS sodium dodecyl sulfate - SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate - SR sarcoplasmic reticulum - SRV sarcoplasmic reticulum vesicles - TBA thiobarbituric acid - TBARS thiobarbituric acid-reactive substances - TFP trifluoperazine  相似文献   
105.
Alveolar macrophages collected by pulmonary lavage from male Fisher-344 rats at intervals (24–72 h) after HgCl2 injection (1–5 mg/kg, sc) were analyzed by several techniques. Within 24–72 h, the macrophages showed morphological signs of activation (hypertrophy and ruffled plasma membrane). Lipid peroxidation (increased malondialdehyde concentration) was not detected until 48 h. Dose- and time-related effects of HgCl2 on malondialdehyde concentration and time-related effects of HgCl2 on malondialdehyde concentration and mercury content of alveolar macrophages were observed 24–72 h postinjection. Diminished cell viability occurred only at 72 h after the highest dosage of HgCl2. This study demonstrates that the alveolar macrophage was a cellular target for mercury toxicity following parenteral exposure to HgCl2.  相似文献   
106.
Trace elements and lipid peroxidation in uremic patients on hemodialysis   总被引:1,自引:0,他引:1  
Trace elements and lipid peroxidation in 26 patients with chronic renal failure treated with hemodialysis and 25 healthy subjects were observed. Both plasma and erythrocyte trace elements and plasma malon dialdehyde (MDA) were examined immediately before and after hemodialysis. Increased levels of plasma Cu, MDA, and erythrocyte Pb, Mn, Zn, and a significantly decreased plasma Se, Zn and erythrocyte Se were found in patients before hemodialysis. After a single hemodialysis, erythrocyte Mn, Cu, Zn, and plasma Cu, Al, and MDA were significantly increased whereas both plasma and erythrocyte Se were lower in patients than in healthy subjects. The level of MDA was not significantly changed during the single hemodialysis. Both plasma and erythrocyte Zn levels and plasma Cu and Al were significantly higher after hemodialysis than before hemodialysis. In conclusion, levels of trace elements are altered by hemodialysis, which may increase patient susceptibility to lipid peroxidation in uremia.  相似文献   
107.
Acyl lipids and pigments were analyzed in young plants of garden pea, spring wheat and spinach exposed to < 5 or 65 nl l?1 ozone 12 h per day for 6 days. In one set of experiments, the plants were exposed to 14CO2 for 2 h 3 days prior to ozone exposure. The plants responded differently to the moderately enhanced level of ozone used Spinach was not at all sensitive while in both pea and wheat, leaves of different ages differed in ozone sensitivity. In pea, ozone sensitivity increased with leaf age. In the second and third oldest leaves, the amounts of galactolipids per leaf area and the proportions of 18:3 of the total lipid extract and of phosphatidylglycerol decreased. In the second oldest leaf, ozone also caused a decreased proportion of 18:3 of monogalactosyldiacylglycerol. In the fourth oldest leaf, lipid composition and galactolipid unsaturation was unaffected, but ozone caused decreased leaf expansion resulting in increased acyl lipid content per leaf area. In both the first and second leaves of wheat, ozone fumigation caused a marked decrease in the content of monogalactosyldiacylglycerol and in the first leaf, the contents of phosphatidylcholine and phosphatidylethanolamine increased. The proportion of 18:3 in phosphatidylcholine was larger in ozone-fumigated than in control plants, while the reverse applied for phosphatidylglycerol. In the oldest sampled leaves of pea and wheat, ozone caused an increase in the radioactivity associated with β-carotene, indicating increased turnover. Thus, while spinach was unaffected, in both pea and wheat ozone caused a decrease in the proportion of chloroplast membrane lipids to non-chloroplast membrane lipids in older leaves while younger leaves were less sensitive.  相似文献   
108.
Random root movements in weightlessness   总被引:1,自引:0,他引:1  
The dynamics of root growth was studied in weightlessness. In the absence of the gravitropic reference direction during weightlessness, root movements could be controlled by spontaneous growth processes, without any corrective growth induced by the gravitropic system. If truly random of nature, the bending behavior should follow socalled 'random walk' mathematics during weightlessness. Predictions from this hypothesis were critically tested.
In a Spacelab ESA-experiment, denoted RANDOM and carried out during the IML-2 Shuttle flight in July 1994, the growth of garden cress ( Lepidium sativum ) roots was followed by time lapse photography at 1-h intervals.
The growth pattern was recorded for about 20 h. Root growth was significantly smaller in weightlessness as compared to gravity (control) conditions.
It was found that the roots performed spontaneous movements in weightlessness. The average direction of deviation of the plants consistently stayed equal to zero, despite these spontaneous movements. The average squared deviation increased linearly with time as predicted theoretically (but only for 8–10 h).
Autocorrelation calculations showed that bendings of the roots, as determined from the 1-h photographs, were uncorrelated after about a 2-h interval.
It is concluded that random processes play an important role in root growth. Predictions from a random walk hypothesis as to the growth dynamics could explain parts of the growth patterns recorded. This test of the hypothesis required microgravity conditions as provided for in a space experiment.  相似文献   
109.
Water relations, desiccation tolerance and longevity of Taxus brevifolia (Nutt.) seeds were studied to determine the optimal stage of development and storage conditions for seeds of this species. Seeds equilibrated to a range of relative humidities (RHs) had unusually low water contents which can be accounted for by the high lipid content of gametophyte tissues (71% of the dry mass). Water relations of embryonic tissue were more typical of those reported for other seed species. The water content below which freezing transitions were not observable in the embryo was ca 0.24 g H2O (g dry weight)−1 (g g−1) for all maturity classes studied. Embryos did not achieve significant levels of desiccation tolerance (survival to water contents less than 0.5 g g−1) until the latter stages of development when dry matter was maximal. Mature embryos could be dried to 0.025 g g−1 (seed water content of 0.010 g g−1) with no loss of viability. Thus, at the latter stages of development, embryo water content could be optimized to avoid both desiccation and freezing damage. Survival of mature seeds declined over a 2-year period when seeds were stored at temperatures between 5 and 35°C and RHs between 14 and 75%, corresponding to seed water contents between 0.015 and 0.07 g g−1. The deterioration rate was slowest for seeds stored at the lowest RH and temperature. Our data indicate that seeds of Taxus brevifolia show orthodox rather than recalcitrant storage characteristics, but that the optimum water content for storage was extremely low. The results suggest that even if stored at optimal water contents and low temperatures, T. brevifolia seeds will be relatively short lived. The high quantity of lipids or reducing sugars may be contributing factors in the poor storage characteristics.  相似文献   
110.
Sunflower ( Helianthus annuus L.) seeds progressively lost their ability to germinate at 25°C, the optimal temperature for germination, after accelerated aging was carried out at 45°C (a temperature too high to permit germination) in water or at 76 or 100% relative humidity (RH). The deleterious effects of the high-temperature treatment increased with increasing seed moisture content. Incubation of seeds at 45°C in water resulted in electrolyte leakage, which indicated a loss of membrane integrity. A relationship between leakage and loss of seed viability could not be assumed, since no increase in electrolyte efflux occurred after aging al 100% RH. Accelerated aging induced accumulation of malondialdehyde, suggesting that seed deterioration was associated with lipid peroxidation. However, there was no direct relationship between lipid peroxidation and deterioration in membrane integrity. Loss of seed viability was also associated with a decrease in superoxide dismutase, catalase and glutathione reductase activities. Finally, the results obtained suggest that sunflower seed deterioration during accelerated aging is closely related to a decrease in the activities of detoxifying enzymes and to lipid peroxidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号