首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1578篇
  免费   155篇
  国内免费   208篇
  1941篇
  2024年   12篇
  2023年   32篇
  2022年   28篇
  2021年   57篇
  2020年   62篇
  2019年   68篇
  2018年   58篇
  2017年   59篇
  2016年   52篇
  2015年   39篇
  2014年   51篇
  2013年   65篇
  2012年   43篇
  2011年   47篇
  2010年   47篇
  2009年   65篇
  2008年   69篇
  2007年   74篇
  2006年   75篇
  2005年   78篇
  2004年   58篇
  2003年   73篇
  2002年   66篇
  2001年   62篇
  2000年   64篇
  1999年   46篇
  1998年   41篇
  1997年   33篇
  1996年   41篇
  1995年   40篇
  1994年   36篇
  1993年   33篇
  1992年   31篇
  1991年   26篇
  1990年   29篇
  1989年   29篇
  1988年   17篇
  1987年   18篇
  1986年   10篇
  1985年   19篇
  1984年   26篇
  1983年   8篇
  1982年   11篇
  1981年   13篇
  1980年   5篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1976年   2篇
  1958年   1篇
排序方式: 共有1941条查询结果,搜索用时 15 毫秒
71.
Taihu Lake is one of the largest freshwater lakes in China. The Lake is very shallow with a mean depth of 1.9 m and an area of 2428 km2. Nutrient concentrations (Org-C, Tot-N and Tot-P) and heavy metal concentrations (Ag, As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sr, Zn, etc.) in the lake's surface sediments were sampled at 13 locations. This was done to determine if industrialized areas along the lake's coastline were impacting the nutrient and heavy metal distribution of the lake's surface sediments. Principal Component Analysis (PCA) was used to assess the degree of contamination and spatial distribution of heavy metals and nutrients in different areas of Taihu Lake.A distinctive spatial distribution of heavy metals and nutrients was observed. Sediments from a large embayment of Taihu Lake called Lake Wulihu had significantly higher nutrient concentrations (Org-C, 2.05–3.83%; Tot-N, 0.28–0.54%; Tot-P, 0.10–0.33%) than any other area of Taihu Lake. These high nutrient levels were associated with the input of untreated domestic sewage from the large (circa one million people) City of Wuxi, which discharges its effluents into the Liangxi River. As a result, Lake Wulihu is the most eutrophic area of Taihu Lake. The nearby Meiliang Bay suffered from the worst heavy metal contamination in Taihu Lake (e.g. As, 64.0; Ag, 4.2; Cd, 0.93; Co, 14.2; Cr, 155.0; Cu, 144.0; Hg, 0.25; Ni, 79.8; Pb, 143.0 and Zn, 471 mg kg–1). These high heavy metal concentrations were ascribed to the discharge of untreated and partially treated industrial waste water from Changzhou and Wujin via the Zhihugang River. Surface sediment samples from the east basin of Taihu Lake were characterized by high Org-C (1.0–2.3%) and Tot-N (0.18–0.37%) and low Tot-P (0.048–0.056%) concentrations. It is likely that macrophytes removal accounts for a major reduction of phosphorus in the sediments of the east basin of Taihu Lake.  相似文献   
72.
Martin Sprung  Udo Rose 《Oecologia》1988,77(4):526-532
Summary In common with many other suspension feeders, the freshwater mussel Dreissena polymorpha has a maximum filtration rate at low food concentrations and a maximum ingestion rate at high food concentrations. These high rates, which reflect the potential maximum food uptake of the animal, are called the filtration capacity and the ingestion capacity respectively. The ingestion capacity was attained without forming pseudofaeces with Chlamydomonas reinhardii as food. The incipient limiting level could be calculated as the quotient of these two values. A decrease of the filtration rate at high food concentrations was correlated with changes in pumping activity, which showed more frequent interruptions, or a lower level of water transport. Dreissena can filter out particles of diameter greater than 0.7 m from the water. Retention reaches a plateau at about 5 m particle diameter. Scanning electron micrographs of the arrangement of the cilia on the gill filaments are given.  相似文献   
73.
74.
谭波  吴庆贵  吴福忠  杨万勤 《生态学报》2015,35(15):5175-5182
为深入了解川西亚高山-高山森林冬季生态学过程,于2008年11月—2009年10月,在土壤冻结初期、冻结期和融化期及植被生长季节,研究了不同海拔(3582 m、3298 m和3023 m)岷江冷杉林土壤养分动态及其对季节性冻融的响应。3个海拔森林土壤冬季具有较高养分含量,且随土壤冻融过程不断变化。土壤有机层可溶性碳和氮、铵态氮、硝态氮含量在冻结初期显著增加后快速降低,并随融化过程迅速增加后再次降低,而土壤可溶性碳和氮、硝态氮含量在冻结期变化不明显,铵态氮显著增加。矿质土壤层可溶性碳和氮、铵态氮含量也在冻结初期显著增加后降低,而土壤可溶性氮、铵态氮和硝态氮在冻结期显著增加,并在融化期经历一个明显的含量高峰。海拔和土层的交互作用显著影响土壤可溶性碳和硝态氮含量,土壤养分含量与土壤温度的相关性随海拔差异而不同。这表明季节性冻融期是土壤生态过程的重要时期,土壤冻融格局显著影响川西亚高山-高山森林土壤养分动态。  相似文献   
75.
Even in nitrogen‐replete ecosystems, microhabitats exist where local‐scale nutrient limitation occurs. For example, coastal waters of the northeastern Pacific Ocean are characterized by high nitrate concentrations associated with upwelling. However, macroalgae living in high‐zone tide pools on adjacent rocky shores are isolated from this upwelled nitrate for extended periods of time, leading to nutrient limitation. When high‐intertidal pools are isolated during low tide, invertebrate‐excreted ammonium accumulates, providing a potential nitrogen source for macroalgae. I quantified the influence of mussels (Mytilus californianus Conrad) on ammonium accumulation rates in tide pools. I then evaluated the effects of ammonium loading by mussels on nitrogen assimilation and growth rates of Odonthalia floccosa (Esp.) Falkenb., a common red algal inhabitant of pools on northeastern Pacific rocky shores. Odonthalia was grown in artificial tide pool mesocosms in the presence and absence of mussels. Mesocosms were subjected to a simulated tidal cycle mimicking emersion and immersion patterns of high‐intertidal pools on the central Oregon coast. In the presence of mussels, ammonium accumulated more quickly in the mesocosms, resulting in increased rates of nitrogen assimilation into algal tissues. These increased nitrogen assimilation rates were primarily associated with higher growth rates. In mesocosms containing mussels, Odonthalia individuals added 41% more biomass than in mesocosms without mussels. This direct positive effect of mussels on macroalgal biomass represents an often overlooked interaction between macroalgae and invertebrates. In nutrient‐limited microhabitats, such as high‐intertidal pools, invertebrate‐excreted ammonium is likely an important local‐scale contributor to macroalgal productivity.  相似文献   
76.
77.
In stratified lakes, dominance of the phytoplankton by cyanobacteria is largely the result of their buoyancy and depth regulation. Bloom-forming cyanobacteria regulate the gas vesicle and storage polymer contents of their cells in response to interactive environmental factors, especially light and nutrients. While research on the roles of nitrogen and phosphorus in cyanobacterial buoyancy regulation has reached a consensus, evaluations of the roles of carbon have remained open to dispute. We investigated the various effects of changes in carbon availability on cyanobacterial buoyancy with continuous cultures of Microcystis aeruginosa Kuetz. emend. Elenkin (1924), a notorious bloom-former. Although CO2 limitation of photosynthesis can promote buoyancy in the short term by preventing the collapse of turgor-sensitive gas vesicles and/or by limiting polysaccharide accumulation, we found that sustained carbon limitation restricts buoyancy regulation by limiting gas vesicle as well as polysaccharide synthesis. These results provide an explanation for the positive effects of bicarbonate enrichment on cyanobacterial nitrogen uptake and bloom formation in lake experiments and may help to explain the pattern of cyanobacterial dominance in phosphorus-enriched, low-carbon lakes.  相似文献   
78.
Numerous studies have demonstrated that fertilization with nutrients such as nitrogen, phosphorus, and potassium increases plant productivity in both natural and managed ecosystems, demonstrating that primary productivity is nutrient limited in most terrestrial ecosystems. In contrast, it has been demonstrated that heterotrophic microbial communities in soil are primarily limited by organic carbon or energy. While this concept of contrasting limitations, that is, microbial carbon and plant nutrient limitation, is based on strong evidence that we review in this paper, it is often ignored in discussions of ecosystem response to global environment changes. The plant‐centric perspective has equated plant nutrient limitations with those of whole ecosystems, thereby ignoring the important role of the heterotrophs responsible for soil decomposition in driving ecosystem carbon storage. To truly integrate carbon and nutrient cycles in ecosystem science, we must account for the fact that while plant productivity may be nutrient limited, the secondary productivity by heterotrophic communities is inherently carbon limited. Ecosystem carbon cycling integrates the independent physiological responses of its individual components, as well as tightly coupled exchanges between autotrophs and heterotrophs. To the extent that the interacting autotrophic and heterotrophic processes are controlled by organisms that are limited by nutrient versus carbon accessibility, respectively, we propose that ecosystems by definition cannot be ‘limited’ by nutrients or carbon alone. Here, we outline how models aimed at predicting non‐steady state ecosystem responses over time can benefit from dissecting ecosystems into the organismal components and their inherent limitations to better represent plant–microbe interactions in coupled carbon and nutrient models.  相似文献   
79.
Plant available moisture and plant available nutrients in soils influence forage quality and availability and subsequently affect reproductive performance in herbivores. However, the relationship of soil moisture, soil nutrients and woody forage with reproductive performance indicators is not well understood in mega‐browsers yet these three are important in selecting suitable areas for conservation of mega‐browsers. Here, the eastern black rhinoceros (Diceros bicornis michaeli), a mega‐browser, was studied in seven geographically distinct populations in Kenya to understand the relationships between its reproductive performance indicators and plant available moisture, plant available nutrients and woody cover. Reproductive parameters showed a complex relationship with plant available moisture and plant available nutrients. We found an increase in the predicted yearly percentage of females calving as plant available nutrients decreased in areas of high levels of plant available moisture but no relationship with plant available nutrients in areas of low plant available moisture. Age at first calving was earlier, inter‐calving interval was longer and yearly percentage of females calving was higher at higher woody cover. Woody plant cover contributes positively to black rhino reproduction performance indicators, whereas plant available moisture and plant available nutrients add to the selection of conservation areas, in more subtle ways.  相似文献   
80.
冬季增温和积雪变化可改变土壤-微生物系统结构和功能。微生物作为陆地生态系统关键生物因子, 发挥着调控土壤养分循环的重要作用, 并对环境扰动, 特别是冬季气候变化十分敏感。开展半干旱区典型草原土壤养分和微生物特性对冬季气候变化的响应研究, 对预测未来气候变化情景下草地生态过程和功能变化意义重大。该研究以宁夏云雾山国家级自然保护区半干旱草原为研究对象, 于冬季布设增温、减雪、增温减雪互作及对照4种处理, 探究了黄土高原典型草原0-5 cm土层土壤养分、酶活性、土壤细菌群落组成对冬季温度和积雪变化的响应规律。结果表明: (1)冬季增温、减雪及互作均提高了0-5 cm土壤温度, 降低了土壤相对湿度, 但却显著增加了土壤冻融循环次数; (2)与对照相比, 不同处理整体上降低了微生物生物量及其多样性, 降低了土壤β-1,4-葡萄糖苷酶(BG)、β-1,4-N-乙酰基氨基葡萄糖苷酶(NAG)、碱性磷酸酶(AKP)活性, 增加了土壤有机碳、全氮、速效磷及铵态氮含量, 硝态氮含量有所下降; (3)研究区土壤细菌以酸杆菌门、变形菌门、放线菌门、芽单胞菌门为主, 优势菌纲以酸杆菌纲、γ-变形杆菌纲、嗜热油菌纲及σ-变形菌纲为主。冗余分析显示, 速效磷含量对细菌群落构成影响最显著, 对群落变异的解释度为21.3%。总之, 冬季气候变化可通过影响土壤温湿度, 特别是冻融循环进而作用于土壤养分循环、酶活性和土壤细菌多样性变化, 这些结果对丰富和拓展气候变化对草地生态系统影响过程与机制的认识, 准确预测典型草原中长期动态变化具有重要意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号