首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10420篇
  免费   731篇
  国内免费   878篇
  2023年   126篇
  2022年   132篇
  2021年   206篇
  2020年   243篇
  2019年   346篇
  2018年   333篇
  2017年   260篇
  2016年   266篇
  2015年   344篇
  2014年   485篇
  2013年   717篇
  2012年   385篇
  2011年   522篇
  2010年   374篇
  2009年   500篇
  2008年   506篇
  2007年   515篇
  2006年   501篇
  2005年   469篇
  2004年   420篇
  2003年   395篇
  2002年   352篇
  2001年   301篇
  2000年   265篇
  1999年   251篇
  1998年   228篇
  1997年   225篇
  1996年   205篇
  1995年   195篇
  1994年   189篇
  1993年   171篇
  1992年   155篇
  1991年   138篇
  1990年   140篇
  1989年   104篇
  1988年   112篇
  1987年   94篇
  1986年   74篇
  1985年   123篇
  1984年   116篇
  1983年   84篇
  1982年   86篇
  1981年   74篇
  1980年   52篇
  1979年   38篇
  1978年   36篇
  1977年   40篇
  1975年   27篇
  1974年   27篇
  1973年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Animals secrete glucocorticoids to deal with daily stressors. Studies have found that supplemental melatonin decreases glucocorticoid metabolite levels in stressed animals. We determined the effect of light interference (LI) and supplemental melatonin on (1) body mass, (2) food intake and (3) glucocorticoid metabolite levels of the striped mouse (Rhabdomys pumilio). Experiment was split into three phases: 8 L: 16 D; 8 L: 16 D with a 15 min light interruption every 4 h; and 8 L: 16 D with a 15 min light interruption every 4 h and melatonin (0.2 μg/ml) added to the water. Body mass was significantly different between phases with lowest body mass (89.17 ± 6.56 g) occurring during standard 8 L: 16 D. LI and melatonin significantly increased body mass. LI increased and melatonin decreased glucocorticoid metabolite levels. LI significantly increased and melatonin significantly decreased assimilation efficiencies possibly due to changes in energetic demands.  相似文献   
992.
Antibodies hydrolyzing myelin basic protein (MBP) can play an important role in the pathogenesis of multiple sclerosis (MS) and systemic lupus erythematosus (SLE). An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of patients with SLE was used. Small pools of phage particles displaying light chains with different affinities for MBP were isolated by affinity chromatography on MBP‐Sepharose, and the fraction eluted with 0.5 M NaCl was used for preparation of individual monoclonal light chains (MLChs, 26–27 kDa). Seventy‐two of 440 individual colonies were randomly chosen, expressed in Escherichia coli in a soluble form, and MLChs were purified by metal chelating chromatography. Twenty‐two of 72 MLChs have high affinity and efficiently hydrolyze only MBP (not other control proteins) demonstrating various pH optima in a 5.7–9.0 range and different substrate specificity in the hydrolysis of four different MBP oligopeptides. Four MLChs demonstrated serine protease‐like and three thiol protease‐like activities, while 11 MLChs were metalloproteases. The activity of three MLChs was inhibited by both phenylmethylsulfonyl fluoride (PMSF) and Ethylenediaminetetraacetic acid (EDTA), two other by EDTA and iodoacetamide, and one by PMSF, EDTA, and iodoacetamide. The ratio of relative activity in the presence of Ca2+, Mg2+, Mn2+, Ni2+, Zn2+, Cu2+, and Co2+ was individual for each of 22 MLCh preparations. It is the first examples of human MLChs, which probably can possess two or even three different proteolytic activities. These observations suggest an extreme diversity of anti‐MBP abzymes in SLE patients. The immune systems of individual SLE patients can generate a variety of anti‐MBP abzymes, which can attack MBP of myelin‐proteolipid sheath of axons and play an important role in MS and SLE pathogenesis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
993.
The mechanisms underpinning the ecological impacts of the presence of artificial night lighting remain elusive. One suspected underlying cause is that the presence of light at night (LAN) supresses nocturnal production of melatonin, a key driver of biological rhythm and a potent antioxidant with a proposed role in immune function. Here, we briefly review the evidence for melatonin as the link between LAN and changes in behaviour and physiology. We then present preliminary data supporting the potential for melatonin to act as a recovery agent mitigating the negative effects of LAN in an invertebrate. Adult crickets (Teleogryllus commodus), exposed to constant illumination, were provided with dietary melatonin (concentrations: 0, 10 or 100 µg ml−1) in their drinking water. We then compared survival, lifetime fecundity and, over a 4-week period, immune function (haemocyte concentration, lysozyme-like and phenoloxidase (PO) activity). Melatonin supplementation was able only partially to mitigate the detrimental effects of LAN: it did not improve survival or fecundity or PO activity, but it had a largely dose-dependent positive effect on haemocyte concentration and lysozyme-like activity. We discuss the implications of these relationships, as well as the usefulness of invertebrates as model species for future studies that explore the effects of LAN.  相似文献   
994.
Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods.  相似文献   
995.
An increasing proportion of the Earth''s surface is illuminated at night. In aquatic ecosystems, artificial light at night (ALAN) may influence microbial communities living in the sediments. These communities are highly diverse and play an important role in the global carbon cycle. We combined field and laboratory experiments using sediments from an agricultural drainage system to examine how ALAN affects communities and alters carbon mineralization. Two identical light infrastructures were installed parallel to a drainage ditch before the start of the experiment. DNA metabarcoding indicated that both sediment communities were similar. After one was lit for five months (July–December 2012) we observed an increase in photoautotroph abundance (diatoms, Cyanobacteria) in ALAN-exposed sediments. In laboratory incubations mimicking summer and winter (six weeks each), communities in sediments that were exposed to ALAN for 1 year (July 2012–June 2013) showed less overall seasonal change compared with ALAN-naive sediments. Nocturnal community respiration was reduced in ALAN-exposed sediments. In long-term exposed summer-sediments, we observed a shift from negative to positive net ecosystem production. Our results indicate ALAN may alter sediment microbial communities over time, with implications for ecosystem-level functions. It may thus have the potential to transform inland waters to nocturnal carbon sinks.  相似文献   
996.
997.
Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non‐appressed thylakoids harbor several high molecular mass pigment–protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light‐harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non‐appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment–protein complexes from all thylakoid compartments, revealed that the pigment–protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment–protein megacomplexes specifically in non‐appressed thylakoids undergoes redox‐dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions.  相似文献   
998.
999.
The structure and function of photosystem II (PSII) are highly susceptible to photo‐oxidative damage induced by high‐fluence or fluctuating light. However, many of the mechanistic details of how PSII homeostasis is maintained under photoinhibitory light remain to be determined. We describe an analysis of the Arabidopsis thaliana gene At5g07020, which encodes an unannotated integral thylakoid membrane protein. Loss of the protein causes altered PSII function under high‐irradiance light, and hence it is named ‘Maintenance of PSII under High light 1’ (MPH1). The MPH1 protein co‐purifies with PSII core complexes and co‐immunoprecipitates core proteins. Consistent with a role in PSII structure, PSII complexes (supercomplexes, dimers and monomers) of the mph1 mutant are less stable in plants subjected to photoinhibitory light. Accumulation of PSII core proteins is compromised under these conditions in the presence of translational inhibitors. This is consistent with the hypothesis that the mutant has enhanced PSII protein damage rather than defective repair. These data are consistent with the distribution of the MPH1 protein in grana and stroma thylakoids, and its interaction with PSII core complexes. Taken together, these results strongly suggest a role for MPH1 in the protection and/or stabilization of PSII under high‐light stress in land plants.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号