首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   83篇
  国内免费   17篇
  2024年   3篇
  2023年   27篇
  2022年   13篇
  2021年   23篇
  2020年   24篇
  2019年   27篇
  2018年   28篇
  2017年   27篇
  2016年   34篇
  2015年   24篇
  2014年   35篇
  2013年   52篇
  2012年   28篇
  2011年   19篇
  2010年   20篇
  2009年   19篇
  2008年   24篇
  2007年   22篇
  2006年   14篇
  2005年   17篇
  2004年   13篇
  2003年   15篇
  2002年   5篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1997年   1篇
  1996年   3篇
  1995年   5篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
排序方式: 共有550条查询结果,搜索用时 31 毫秒
101.
管翠  刘亭亭  颜伟玉  曾志将 《昆虫知识》2011,48(4):1071-1076
蜜蜂是一种完全社会化的昆虫,它们在寿命方面表现出了显著的级型差异.蜂王的平均寿命是1~2年,而工蜂在生产季节平均寿命是30~40 d,越冬季节平均寿命是90~200d,显然蜜蜂寿命有可塑性.这种可塑性是由环境因素控制,因为蜂王和工蜂的遗传基础是一致的.另外工蜂任务可以发生逆转,这意味着老化的逆转.本文综述了近年来一些老...  相似文献   
102.
In many organisms, attenuation of growth signaling by caloric restriction or mutational inactivation of growth signaling pathways extends lifespan and protects against cancer and other age-related diseases. The focus of many efforts to understand these effects has been on the induction of oxidative stress defenses that inhibit cellular senescence and cell death. Here we show that in the model organism S. cerevisiae, growth signaling induces entry of cells in stationary phase into S phase in parallel with loss of reproductive capacity, which is enhanced by elevated concentrations of glucose. Overexpression of RNR1 encoding a ribonucleotide reductase subunit required for the synthesis of deoxynucleotide triphosphates and DNA replication suppresses the accelerated loss of reproductive capacity of cells cultured in high glucose. The reduced reproductive capacity of these cells is also suppressed by excess threonine, which buffers dNTP pools when ribonucleotide reductase activity is limiting. Caloric restriction or inactivation of the AKT homolog Sch9p inhibits senescence and death in stationary phase cells caused by the DNA replication inhibitor hydroxyurea or by inactivation of the DNA replication and repair proteins Sgs1p or Rad27p. Inhibition of DNA replication stress represents a novel mechanism by which caloric restriction promotes longevity in S. cerevisiae. A similar mechanism may promote longevity and inhibit cancer and other age-related diseases in humans.  相似文献   
103.
104.
DJ-1 (or PARK-7) is a multifunctional protein implicated in numerous pathologies including cancer, sterility and Parkinson disease (PD). The popular genetic model Drosophila melanogaster has two orthologs, dj-1: α and β. Dysfunction of dj-1β strongly impairs fly mobility in an age-dependent manner. In this study, we analyze in detail the molecular mechanism underlying the dj-1β mutant phenotype. Mitochondrial hydrogen peroxide production, but not superoxide production, was increased in mutant flies. An increase in peroxide leak from mitochondria causes oxidative damage elsewhere and explains the strong reduction in mobility caused by dj-1β mutation. However, at the same time, increased levels of hydrogen peroxide activated a pro-survival program characterized by (1) an alteration in insulin-like signaling, (2) an increase in mitochondrial biogenesis and (3) an increase in the de-acetylase activity of sirtuins. The activation of this pro-survival program was associated with increased longevity under conditions of moderate oxidative stress. Additionally, the dj-1β mutation unexpectedly accelerated development, a phenotype not previously associated with this mutation. Our results reveal an important role of dj-1β in oxidative stress handling, insulin-like signaling and development in Drosophila melanogaster.  相似文献   
105.
Short telomeres have been shown to be preferentially elongated in both yeast and mouse models. We examined this in human cells, by utilising cells with large allelic telomere length differentials and observing the relative rates of elongation following the expression of hTERT. We observed that short telomeres are gradually elongated in the first 26 PDs of growth, whereas the longer telomeres displayed limited elongation in this period. Telomeres coalesced at similar lengths irrespective of their length prior to the expression of hTERT. These data indicate that short telomeres are marked for gradual elongation to a cell strain specific length threshold.  相似文献   
106.
Stress and low socioeconomic status in humans confer increased vulnerability to morbidity and mortality. However, this association is not mechanistically understood nor has its causation been explored in animal models thus far. Recently, cellular senescence has been suggested as a potential mechanism linking lifelong stress to age‐related diseases and shorter life expectancy in humans. Here, we established a causal role for lifelong social stress on shortening lifespan and increasing the risk of cardiovascular disease in mice. Specifically, we developed a lifelong chronic psychosocial stress model in which male mouse aggressive behavior is used to study the impact of negative social confrontations on healthspan and lifespan. C57BL/6J mice identified through unbiased cluster analysis for receiving high while exhibiting low aggression, or identified as subordinate based on an ethologic criterion, had lower median and maximal lifespan, and developed earlier onset of several organ pathologies in the presence of a cellular senescence signature. Critically, subordinate mice developed spontaneous early‐stage atherosclerotic lesions of the aortic sinuses characterized by significant immune cells infiltration and sporadic rupture and calcification, none of which was found in dominant subjects. In conclusion, we present here the first rodent model to study and mechanistically dissect the impact of chronic stress on lifespan and disease of aging. These data highlight a conserved role for social stress and low social status on shortening lifespan and increasing the risk of cardiovascular disease in mammals and identify a potential mechanistic link for this complex phenomenon.  相似文献   
107.
Loss of SURF1, a Complex IV assembly protein, was reported to increase lifespan in mice despite dramatically lower cytochrome oxidase (COX) activity. Consistent with this, our previous studies found advantageous changes in metabolism (reduced adiposity, increased insulin sensitivity, and mitochondrial biogenesis) in Surf1?/? mice. The lack of deleterious phenotypes in Surf1?/? mice is contrary to the hypothesis that mitochondrial dysfunction contributes to aging. We found only a modest (nonsignificant) extension of lifespan (7% median, 16% maximum) and no change in healthspan indices in Surf1?/? vs. Surf1+/+ mice despite substantial decreases in COX activity (22%–87% across tissues). Dietary restriction (DR) increased median lifespan in both Surf1+/+ and Surf1?/? mice (36% and 19%, respectively). We measured gene expression, metabolites, and targeted expression of key metabolic proteins in adipose tissue, liver, and brain in Surf1+/+ and Surf1?/? mice. Gene expression was differentially regulated in a tissue‐specific manner. Many proteins and metabolites are downregulated in Surf1?/? adipose tissue and reversed by DR, while in brain, most metabolites that changed were elevated in Surf1?/? mice. Finally, mitochondrial unfolded protein response (UPRmt)‐associated proteins were not uniformly altered by age or genotype, suggesting the UPRmt is not a key player in aging or in response to reduced COX activity. While the changes in gene expression and metabolism may represent compensatory responses to mitochondrial stress, the important outcome of this study is that lifespan and healthspan are not compromised in Surf1?/? mice, suggesting that not all mitochondrial deficiencies are a critical determinant of lifespan.  相似文献   
108.
109.
 Deciduous larches, Larix spp., and evergreen pines, Pinus spp., are sympatric Pinaceae conifers. Adjacent monocultures of 10-year-old Larix decidua Mill. and Pinus resinosa Ait. were subjected to single-season artificial defoliation by clipping from 0% to 99% of each needle. Survival, above-ground productivity, and architecture were measured for 36 months. P. resinosa and L. decidua exhibited differential relationships with defoliation intensity and recovery time. Two months after treatment, defoliation reduced larch height growth but had no effect on radial growth. By contrast, P. resinosa stem radial growth was reduced immediately, but height growth was not decreased until the following year. Pine leader growth and above-ground biomass following 66% defoliation never recovered to control values or 33% defoliated pines. Conversely, defoliated larch quickly recovered from an initial growth loss to eliminate all treatment effects on biomass. The plasticity in architectural response found in larch, but not pine, might partially account for defoliation tolerance. Both P. resinosa and L. decidua exhibited non-linear responses to defoliation. These patterns may be caused partially by the uneven distribution of nutrients within needles, rather than a simple function of leaf area lost to defoliators. Concentrations of 13 nutrients in P. resinosa were highest either in the mid- (Ca, Mg, S, Zn, B, Mn, Fe, Al and Na) or basal- (N, P, K, and Cu) section. The relatively low nutrient content in needle tips may contribute to similar biomass productivity between trees defoliated 33% and controls. Removal of needle mid-sections significantly reduced whole-plant productivity. In contrast, L. decidua nutrients are concentrated in the distal sections. Nutrient concentrations were generally highest in larch. Our results agree with an emergent prediction of the carbon/nutrient balance theory that defoliation more severely reduces growth of evergreen than deciduous species. These results are discussed within the physiological, ecological and evolutionary context of allocation theory, with implications for natural resource management and plant-insect interaction theory. Received: 6 April 1995 / Accepted: 29 August 1995  相似文献   
110.
High condition enables individuals to express a phenotype with greater reproductive potential. However, life‐history theory predicts that reproduction will trade off with somatic maintenance and viability, and several studies have reported faster age‐related decline in performance in high‐condition individuals, suggesting that high condition in early life is associated with accelerated somatic deterioration. This trade‐off may be especially pronounced in males, which often express condition‐dependent secondary sexual traits that can impose viability costs during development and through damage‐inflicting adult sexual behaviours. To test this prediction, we reared larvae of the neriid fly Telostylinus angusticollis on diets of varying nutrient content and quantified somatic deterioration in solitary males, males housed in all‐male or mixed‐sex groups and immobilized males subjected to mechanical stress. We found that males reared on a nutrient‐rich larval diet (high‐condition males) suffered a higher rate of somatic deterioration with age, particularly when housed in groups. Perhaps as a result of accelerated somatic deterioration, high‐condition males did not outlive low‐condition males. In addition, high‐condition males housed in all‐male groups experienced a greater reduction in escape response with age than males housed in mixed‐sex groups, suggesting that male–male combat promotes somatic deterioration. However, even when immobilized, high‐condition males were still found to be more susceptible to somatic damage than low‐condition males. Our findings suggest that a high‐condition male phenotype is more prone to somatic damage, both as a result of associated behaviours such as combat, and because of the inherent fragility of the high‐condition body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号