首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4710篇
  免费   181篇
  国内免费   270篇
  5161篇
  2023年   65篇
  2022年   117篇
  2021年   117篇
  2020年   104篇
  2019年   117篇
  2018年   93篇
  2017年   101篇
  2016年   108篇
  2015年   117篇
  2014年   163篇
  2013年   266篇
  2012年   97篇
  2011年   137篇
  2010年   86篇
  2009年   163篇
  2008年   195篇
  2007年   183篇
  2006年   189篇
  2005年   169篇
  2004年   161篇
  2003年   152篇
  2002年   139篇
  2001年   97篇
  2000年   93篇
  1999年   102篇
  1998年   79篇
  1997年   83篇
  1996年   82篇
  1995年   111篇
  1994年   86篇
  1993年   54篇
  1992年   67篇
  1991年   73篇
  1990年   52篇
  1989年   40篇
  1987年   39篇
  1986年   48篇
  1985年   87篇
  1984年   91篇
  1983年   62篇
  1982年   78篇
  1981年   78篇
  1980年   70篇
  1979年   71篇
  1978年   69篇
  1977年   76篇
  1976年   60篇
  1975年   63篇
  1974年   70篇
  1973年   68篇
排序方式: 共有5161条查询结果,搜索用时 15 毫秒
251.
252.
Three different pathways of serine (Ser) biosynthesis have been described in plants: the Glycolate pathway, which is part of the Photorespiratory pathway, and 2 non-Photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Ser Biosynthesis (PPSB) has been known to exist since the 1950s, but its biological relevance was not revealed until quite recently when the last enzyme of the pathway, the Phosphoserine Phosphatase, was functionally characterized. In the associated study1, we characterized a family of genes coding for putatite phosphoglycerate dehydrogenases (PGDH, 3-PGDH, and EDA9), the first enzyme of the PPSB. A metabolomics study using overexpressing plants indicated that all PGDH family genes were able to regulate Ser homeostasis but only lacking of EDA9 expression caused drastic developmental defects. We provided genetic and molecular evidence for the essential role of EDA9 for embryo and pollen development. Here, some new insights into the physiological/molecular function of PPSB and Ser are presented and discussed.  相似文献   
253.
254.
Powdery mildew is a fungal disease that affects a wide range of plants and reduces crop yield worldwide. As obligate biotrophs, powdery mildew fungi manipulate living host cells to suppress defence responses and to obtain nutrients. Members of the plant order Brassicales produce indole glucosinolates that effectively protect them from attack by non-adapted fungi. Indol-3-ylmethyl glucosinolate is constitutively produced in the phloem and transported to epidermal cells for storage. Upon attack, indol-3-ylmethyl glucosinolate is activated by CYP81F2 to provide broad-spectrum defence against fungi. How de novo biosynthesis and transport contribute to defence of powdery mildew-attacked epidermal cells is unknown. Bioassays and glucosinolate analysis demonstrate that GTR glucosinolate transporters are not involved in antifungal defence. Using quantitative live-cell imaging of fluorophore-tagged markers, we show that accumulation of the glucosinolate biosynthetic enzymes CYP83B1 and SUR1 is induced in epidermal cells attacked by the non-adapted barley powdery mildew Blumeria graminis f.sp. hordei. By contrast, glucosinolate biosynthesis is attenuated during interaction with the virulent powdery mildew Golovinomyces orontii. Interestingly, SUR1 induction is delayed during the Golovinomyces orontii interaction. We conclude that epidermal de novo synthesis of indol-3-ylmethyl glucosinolate contributes to CYP81F2-mediated broad-spectrum antifungal resistance and that adapted powdery mildews may target this process.  相似文献   
255.
256.
The tenovins are a frequently studied class of compounds capable of inhibiting sirtuin activity, which is thought to result in increased acetylation and protection of the tumor suppressor p53 from degradation. However, as we and other laboratories have shown previously, certain tenovins are also capable of inhibiting autophagic flux, demonstrating the ability of these compounds to engage with more than one target. In this study, we present two additional mechanisms by which tenovins are able to activate p53 and kill tumor cells in culture. These mechanisms are the inhibition of a key enzyme of the de novo pyrimidine synthesis pathway, dihydroorotate dehydrogenase (DHODH), and the blockage of uridine transport into cells. These findings hold a 3-fold significance: first, we demonstrate that tenovins, and perhaps other compounds that activate p53, may activate p53 by more than one mechanism; second, that work previously conducted with certain tenovins as SirT1 inhibitors should additionally be viewed through the lens of DHODH inhibition as this is a major contributor to the mechanism of action of the most widely used tenovins; and finally, that small changes in the structure of a small molecule can lead to a dramatic change in the target profile of the molecule even when the phenotypic readout remains static.  相似文献   
257.
Nucleotide sugar transporters, encoded by the SLC35 gene family, deliver nucleotide sugars throughout the cell for various glycosyltransferase-catalyzed glycosylation reactions. GlcNAc, in the form of UDP-GlcNAc, and galactose, as UDP-Gal, are delivered into the Golgi apparatus by SLC35A3 and SLC35A2 transporters, respectively. However, although the UDP-Gal transporting activity of SLC35A2 has been clearly demonstrated, UDP-GlcNAc delivery by SLC35A3 is not fully understood. Therefore, we analyzed a panel of CHO, HEK293T, and HepG2 cell lines including WT cells, SLC35A2 knockouts, SLC35A3 knockouts, and double-knockout cells. Cells lacking SLC35A2 displayed significant changes in N- and O-glycan synthesis. However, in SLC35A3-knockout CHO cells, only limited changes were observed; GlcNAc was still incorporated into N-glycans, but complex type N-glycan branching was impaired, although UDP-GlcNAc transport into Golgi vesicles was not decreased. In SLC35A3-knockout HEK293T cells, UDP-GlcNAc transport was significantly decreased but not completely abolished. However, N-glycan branching was not impaired in these cells. In CHO and HEK293T cells, the effect of SLC35A3 deficiency on N-glycan branching was potentiated in the absence of SLC35A2. Moreover, in SLC35A3-knockout HEK293T and HepG2 cells, GlcNAc was still incorporated into O-glycans. However, in the case of HepG2 cells, no qualitative changes in N-glycans between WT and SLC35A3 knockout cells nor between SLC35A2 knockout and double-knockout cells were observed. These findings suggest that SLC35A3 may not be the primary UDP-GlcNAc transporter and/or different mechanisms of UDP-GlcNAc transport into the Golgi apparatus may exist.  相似文献   
258.
259.

Background and Aims

There are many unresolved issues concerning the biochemistry of fructan biosynthesis. The aim of this paper is to address some of these by means of modelling mathematically the biochemical processes.

Methods

A model has been constructed for the step-by-step synthesis of fructan polymers. This is run until a steady state is achieved for which a polymer distribution is predicted. It is shown how qualitatively different distributions can be obtained.

Key Results

It is demonstrated how a set of experimental results on polymer distribution can by simulated by a simple parameter adjustments.

Conclusions

Mathematical modelling of fructan biosynthesis can provide a useful tool for helping elucidate the details of the biosynthetic processes.  相似文献   
260.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号