首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   833篇
  免费   49篇
  国内免费   32篇
  2024年   1篇
  2023年   6篇
  2022年   5篇
  2021年   19篇
  2020年   20篇
  2019年   22篇
  2018年   19篇
  2017年   14篇
  2016年   24篇
  2015年   18篇
  2014年   22篇
  2013年   47篇
  2012年   22篇
  2011年   23篇
  2010年   18篇
  2009年   34篇
  2008年   22篇
  2007年   31篇
  2006年   30篇
  2005年   21篇
  2004年   19篇
  2003年   33篇
  2002年   34篇
  2001年   29篇
  2000年   22篇
  1999年   17篇
  1998年   22篇
  1997年   30篇
  1996年   22篇
  1995年   31篇
  1994年   22篇
  1993年   33篇
  1992年   37篇
  1991年   20篇
  1990年   23篇
  1989年   23篇
  1988年   24篇
  1987年   21篇
  1986年   9篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   6篇
  1979年   1篇
  1977年   1篇
排序方式: 共有914条查询结果,搜索用时 15 毫秒
911.
912.
Invasive nitrogen-fixing plants drive vegetation dynamics and may cause irreversible changes in nutrient-limited ecosystems through increased soil resources. We studied how soil conditioning by the invasive alien Lupinus nootkatensis affected the seedling growth of co-occurring native plant species in coastal dunes, and whether responses to lupin-conditioned soil could be explained by fertilisation effects interacting with specific ecological strategies of the native dune species. Seedling performance of dune species was compared in a greenhouse experiment using field-collected soil from within or outside coastal lupin stands. In associated experiments, we quantified the response to nutrient supply of each species and tested how addition of specific nutrients affected growth of the native grass Festuca arundinacea in control and lupin-conditioned soil. We found that lupin-conditioned soil increased seedling biomass in 30 out of 32 native species; the conditioned soil also had a positive effect on seedling biomass of the invasive lupin itself. Increased phosphorus mobilisation by lupins was the major factor driving these positive seedling responses, based both on growth responses to addition of specific elements and analyses of plant available soil nutrients. There were large differences in growth responses to lupin-conditioned soil among species, but they were unrelated to selected autecological indicators or plant strategies. We conclude that Lupinus nootkatensis removes the phosphorus limitation for growth of native plants in coastal dunes, and that it increases cycling of other nutrients, promoting the growth of its own seedlings and a wide range of dune species. Finally, our study indicates that there are no negative soil legacies that prevent re-establishment of native plant species after removal of lupins.  相似文献   
913.
Sequence comparison studies revealed that the drug resistance transporter of Streptomyces peucetius (DrrAB) and two nodulation gene products (NodIJ) of Rhizobium leguminosarum are homologous to proteins encoded by three sets of genes that comprise capsular polysaccharide export systems in gram-negative bacteria: KpsTM of Escherichia coli, BexABC of Haemophilus influenzae, and CtrDCB of Neisseria meningitidis. These five systems comprise a new subfamily within the family of ATP binding cassette (ABC)-type transporters. We have termed this subfamily the ABC-2 subfamily. For three of the systems comprising this subfamily (Drr, Nod, and Kps) only one integral membrane constituent has been identified, whereas for the other two systems (Bex and Ctr) two dis-similar integral membrane constituents have been found. This observation suggests that the transmembrane channels of ABC-2-type transporters can be formed of homo- or heterooligomers as is true of several other classes of transport systems.  相似文献   
914.
Nodulation of Vicia sativa subsp. nigra L. by Rhizobium bacteria is coupled to the development of thick and short roots (Tsr). This root phenotype as well as root-hair induction (Hai) and root-hair deformation (Had) are caused by a factor(s) produced by the bacteria in response to plant flavonoids. When very low inoculum concentrations (0.5–5 bacteria·ml-1) were used, V. sativa plants did not develop the Tsr phenotype and became nodulated earlier than plants with Tsr roots. Furthermore, the nodules of these plants were located on the primary root in contrast to nodules on Tsr roots, which were all located at sites of lateral-root emergence. The average numbers of nodules per plant were not significantly different for these two types of nodulation. Root-growth inhibition and Hai, but not Had, could be mimicked by ethephon, and inhibited by aminoethoxyvinylglycine (AVG). Addition of AVG to co-cultures of Vicia sativa and the standard inoculum concentration of 5·105 bacteria·ml-1 suppressed the development of the Tsr phenotype and restored nodulation to the pattern that was observed with very low concentrations of bacteria (0.5–5 bacteria·ml-1). The delay in nodulation on Tsr roots appeared to be caused by the fact that nodule meristems did not develop on the primary root, but only on the emerging laterals. The relationship between Tsr, Hai, Had, and nodulation is discussed.Abbreviations AVG aminoethoxyvinylglycine - cfu colonyforming units - Had root-hair deformation - Hai root-hair induction - NB naringenin-bacteria filtrate - Tsr Thick and short roots  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号