首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9498篇
  免费   1281篇
  国内免费   1061篇
  11840篇
  2024年   49篇
  2023年   267篇
  2022年   263篇
  2021年   391篇
  2020年   466篇
  2019年   504篇
  2018年   433篇
  2017年   477篇
  2016年   478篇
  2015年   449篇
  2014年   498篇
  2013年   602篇
  2012年   412篇
  2011年   379篇
  2010年   369篇
  2009年   430篇
  2008年   474篇
  2007年   465篇
  2006年   438篇
  2005年   366篇
  2004年   335篇
  2003年   347篇
  2002年   288篇
  2001年   274篇
  2000年   220篇
  1999年   241篇
  1998年   183篇
  1997年   204篇
  1996年   161篇
  1995年   118篇
  1994年   114篇
  1993年   110篇
  1992年   120篇
  1991年   100篇
  1990年   96篇
  1989年   89篇
  1988年   102篇
  1987年   61篇
  1986年   63篇
  1985年   77篇
  1984年   73篇
  1983年   43篇
  1982年   41篇
  1981年   39篇
  1980年   38篇
  1979年   18篇
  1978年   13篇
  1977年   19篇
  1976年   11篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
Salicylic acid has a role in regulating gene expression during leaf senescence   总被引:19,自引:0,他引:19  
Leaf senescence is a complex process that is controlled by multiple developmental and environmental signals and is manifested by induced expression of a large number of different genes. In this paper we describe experiments that show, for the first time, that the salicylic acid (SA)-signalling pathway has a role in the control of gene expression during developmental senescence. Arabidopsis plants defective in the SA-signalling pathway (npr1 and pad4 mutants and NahG transgenic plants) were used to investigate senescence-enhanced gene expression, and a number of genes showed altered expression patterns. Senescence-induced expression of the cysteine protease gene SAG12, for example, was conditional on the presence of SA, together with another unidentified senescence-specific factor. Changes in gene expression patterns were accompanied by a delayed yellowing and reduced necrosis in the mutant plants defective in SA-signalling, suggesting a role for SA in the cell death that occurs at the final stage of senescence. We propose the presence of a minimum of three senescence-enhanced signalling factors in senescing leaves, one of which is SA. We also suggest that a combination of signalling factors is required for the optimum expression of many genes during senescence.  相似文献   
93.
采用离析法和石蜡切片法对单芽狗脊营养器官进行形态解剖研究。结果表明:单芽狗脊叶为异面叶,上、下表皮细胞均为不规则型,仅下表皮有气孔器分布;叶柄维管束有2~6个,自叶柄基部向上至叶轴仅有2个较大的维管束;根状茎薄壁细胞之间有多个维管束散生分布,且富含丰富的淀粉粒;皮层在根的横切结构中占比较大,木质部的发育方式为外始式;单芽狗脊珠芽的发育过程分为三个阶段,珠芽原基的形成期、珠芽原基的分化期、成熟期。  相似文献   
94.
8种绿化树种光合特性及叶片解剖结构比较   总被引:3,自引:0,他引:3  
城市绿化不仅包含了园林绿化的美化作用,还具有重要的生态功能,其生态功能是通过植物的生理活动实现的。光合能力在种间和基因型间的变化很大,这些差异通常与代谢和(或)叶片的解剖结构的性质有关。本研究选择8种哈尔滨常见树种,采用Li-6400便携式光合测定系统对叶净光合速率(P_n)、呼吸速率(R_d)、蒸腾速率(T_r)、气孔导度(G_s)、胞间CO_2浓度(C_i)等进行测定,并利用显微镜观察测定叶片厚度、表皮厚度、栅栏组织厚度、海绵组织厚度,从而探讨叶片结构对光合生理的影响。结果表明:8个树种间叶片最大光合速率、气孔导度、胞间CO_2浓度、蒸腾速率、光饱和点差异显著(P <0.05);表皮厚度、栅栏组织厚度、上表皮气孔密度和下表皮气孔密度差异显著(P <0.05)。虽然8个树种间光合能力和叶片解剖结构的差异较大,但分析发现其间也存在一定的相关性。其中,光饱和点与叶表皮厚度显著正相关(P <0.01),相关系数为0.78。胞间CO_2浓度与上表皮气孔密度显著负相关(P <0.05),相关系数为-0.65。而最大光合速率、呼吸速率、蒸腾速率和光补偿点与表皮厚度、栅栏组织厚度、海绵组织厚度、上表皮气孔密度和下表皮气孔密度相关均不显著(P> 0.05)。胞间CO_2浓度与表皮厚度、栅栏组织厚度、海绵组织厚度和下表皮气孔密度相关均不显著(P> 0.05)。光饱和点与栅栏组织厚度、海绵组织厚度、上表皮气孔密度和下表皮气孔密度相关均不显著(P> 0.05)。虽然对叶片结构对生理过程的影响的机理还需要进一步研究,但是我们认为叶片解剖结构的研究可以更好地理解生理指标的变化。  相似文献   
95.

Background and Aims

Hydrophytes generally exhibit highly acquisitive leaf economics. However, a range of growth forms is evident, from small, free-floating and rapidly growing Lemniden to large, broad-leaved Nymphaeiden, denoting variability in adaptive strategies. Traits used to classify adaptive strategies in terrestrial species, such as canopy height, are not applicable to hydrophytes. We hypothesize that hydrophyte leaf size traits and economics exhibit sufficient overlap with terrestrial species to allow a common classification of plant functional types, sensu Grime''s CSR theory.

Methods

Leaf morpho-functional traits were measured for 61 species from 47 water bodies in lowland continental, sub-alpine and alpine bioclimatic zones in southern Europe and compared against the full leaf economics spectrum and leaf size range of terrestrial herbs, and between hydrophyte growth forms.

Key Results

Hydrophytes differed in the ranges and mean values of traits compared with herbs, but principal components analysis (PCA) demonstrated that both groups shared axes of trait variability: PCA1 encompassed size variation (area and mass), and PCA2 ranged from relatively dense, carbon-rich leaves to nitrogen-rich leaves of high specific leaf area (SLA). Most growth forms exhibited trait syndromes directly equivalent to herbs classified as R adapted, although Nymphaeiden ranged between C and SR adaptation.

Conclusions

Our findings support the hypothesis that hydrophyte adaptive strategy variation reflects fundamental trade-offs in economics and size that govern all plants, and that hydrophyte adaptive strategies can be directly compared with terrestrial species by combining leaf economics and size traits.  相似文献   
96.

Background and Aims

Plasticity in structural and functional traits related to water balance may determine plant performance and survival in ecosystems characterized by water limitation or high levels of rainfall variability, particularly in perennial herbaceous species with long generation cycles. This paper addresses whether and the extent to which several such seasonal to long-term traits respond to changes in moisture availability.

Methods

Using a novel approach that integrates ecology, physiology and anatomy, a comparison was made of lifetime functional traits in the root xylem of a long-lived perennial herb (Potentilla diversifolia, Rosaceae) growing in dry habitats with those of nearby individuals growing where soil moisture had been supplemented for 14 years. Traditional parameters such as specific leaf area (SLA) and above-ground growth were also assessed.

Key Results

Individuals from the site receiving supplemental moisture consistently showed significant responses in all considered traits related to water balance: SLA was greater by 24 %; roots developed 19 % less starch storing tissue, an indicator for drought-stress tolerance; and vessel size distributions shifted towards wider elements that collectively conducted water 54 % more efficiently – but only during the years for which moisture was supplemented. In contrast, above-ground growth parameters showed insignificant or inconsistent responses.

Conclusions

The phenotypic changes documented represent consistent, dynamic responses to increased moisture availability that should increase plant competitive ability. The functional plasticity of xylem anatomy quantified in this study constitutes a mechanistic basis for anticipating the differential success of plant species in response to climate variability and change, particularly where water limitation occurs.  相似文献   
97.
The literature describes different rooting protocols for Arabidopsis thaliana as models to study adventitious rooting, and results are generally perceived as comparable. However, there is a lack of investigations focusing on the distinct features, advantages and limitations of each method in the study of adventitious rooting with both wild-type (WT) ecotypes and their respective mutants. This investigation was undertaken to evaluate the adventitious rooting process in three different experimental systems, all using A. thaliana, analysing the same rooting parameters after transient exposure to auxin (indole-3-acetic acid) and control conditions: excised leaves, de-rooted plants and etiolated seedlings. The founding tissues and sites of origin of roots differed depending on the system used, whereas all rooting patterns were of the direct type (i.e., without callus formation). None of the systems had an absolute requirement for exogenous auxin, although rooting was enhanced by this phytohormone, with the exception of de-rooted plants, which had adventitious rooting strongly inhibited by exogenous auxin. Root elongation was much favoured in isolated leaves. Auxin-overproducing mutants could not be used in the detached leaf system due to precocious senescence; in the de-rooted plant system, these mutants had a WT-like rooting response, whereas the expression of the 'rooty' phenotype was only evident in the etiolated seedling system. Adventitious rooting of etiolated WT seedlings in the presence of exogenous auxin was inhibited by exogenous flavonoids, which act as auxin transport inhibitors; surprisingly, the flavonoid-deficient mutant chs had a lower rooting response compared to WT. Although Arabidopsis is an excellent model system to study adventitious rooting, physiological and developmental responses differed significantly, underlining the importance of avoiding data generalisation on rooting responses derived from different experimental systems with this species.  相似文献   
98.
Studying relationships of plant traits to ecosystem properties is an emerging approach aiming to understand plant's potential effect on ecosystem functioning. In the current study, we explored links between morphological and nutritional leaf traits of two Mediterranean perennial grass species Stipa tenacissima and Lygeum spartum, widely used to prevent desertification process by stabilizing sand dunes. We evaluated also relationships in terms of nitrogen (N) and phosphorus (P) availability between leaves of the investigated species and the corresponding soil. Our results showed that leaf P was very low in comparison with leaf N for the two investigated species. In fact, chlorophyll content, photosynthesis capacity and water conservation during photosynthesis are mainly linked to leaf nitrogen content. Our findings support previous studies showing that at the species levels, morphological and nutritional leaf traits were not related. On the other hand, significant relationships were obtained between soil N and leaf N for S. tenacissima (= 0.011) and L. spartum (= 0.033). However, leaf P was not significantly related to soil P availability for both species. We suggest that any decrease in soil N with the predicted increasing aridity may result in reduction in leaf N and thus in worst dysfunction of some biological processes levels.  相似文献   
99.
Variation in hippocampal neuroanatomy correlates well with spatial learning ability in mice. Here, we have studied both hippocampal neuroanatomy and behavior in 53 isogenic BXD recombinant strains derived from C57BL/6J and DBA/2J parents. A combination of experimental, neuroinformatic and systems genetics methods was used to test the genetic bases of variation and covariation among traits. Data were collected on seven hippocampal subregions in CA3 and CA4 after testing spatial memory in an eight‐arm radial maze task. Quantitative trait loci were identified for hippocampal structure, including the areas of the intra‐ and infrapyramidal mossy fibers (IIPMFs), stratum radiatum and stratum pyramidale, and for a spatial learning parameter, error rate. We identified multiple loci and gene variants linked to either structural differences or behavior. Gpc4 and Tenm2 are strong candidate genes that may modulate IIPMF areas. Analysis of gene expression networks and trait correlations highlight several processes influencing morphometrical variation and spatial learning.  相似文献   
100.
Urban  L.  Barthélémy  L.  Bearez  P.  Pyrrha  P. 《Photosynthetica》2001,39(2):275-281
Gas exchange and chlorophyll (Chl) fluorescence were measured on young mature leaves of rose plants (Rosa hybrida cvs. First Red and Twingo) grown in two near-to-tight greenhouses, one under control ambient CO2 concentration, AC (355 µmol mol–1) and one under CO2 enrichment, EC (700 µmol mol–1), during four flushes from late June to early November. Supply of water and mineral elements was non-limiting while temperature was allowed to rise freely during daytime. Leaf diffusive conductance was not significantly reduced at EC but net photosynthetic rate increased by more than 100 %. Although the concentration of total non-structural saccharides was substantially higher in the leaves from the greenhouse with EC, PS2 (quantum efficiency of radiation use) around noon was not significantly reduced at EC indicating that there was no down-regulation of electron transport. Moreover, CO2 enrichment did not cause any increase in the risk of photo-damage, as estimated by the 1 – qP parameter. Non-photochemical quenching was even higher in the greenhouse with EC during the two summer flushes, when temperature and photosynthetic photon flux density (PPFD) were the highest. Hence rose photosynthesis benefits strongly from high concentrations of atmospheric CO2 at both high and moderate temperatures and PPFD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号