首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6581篇
  免费   732篇
  国内免费   819篇
  2024年   23篇
  2023年   113篇
  2022年   144篇
  2021年   181篇
  2020年   247篇
  2019年   258篇
  2018年   227篇
  2017年   264篇
  2016年   272篇
  2015年   244篇
  2014年   264篇
  2013年   409篇
  2012年   282篇
  2011年   264篇
  2010年   243篇
  2009年   257篇
  2008年   322篇
  2007年   344篇
  2006年   329篇
  2005年   286篇
  2004年   273篇
  2003年   290篇
  2002年   232篇
  2001年   234篇
  2000年   187篇
  1999年   198篇
  1998年   162篇
  1997年   182篇
  1996年   141篇
  1995年   103篇
  1994年   99篇
  1993年   105篇
  1992年   117篇
  1991年   87篇
  1990年   91篇
  1989年   82篇
  1988年   95篇
  1987年   57篇
  1986年   55篇
  1985年   71篇
  1984年   70篇
  1983年   39篇
  1982年   36篇
  1981年   32篇
  1980年   37篇
  1979年   12篇
  1978年   10篇
  1977年   22篇
  1976年   9篇
  1975年   9篇
排序方式: 共有8132条查询结果,搜索用时 31 毫秒
141.
Plant regeneration via somatic embryogenesis in ginger   总被引:5,自引:0,他引:5  
Embryogenic callus cultures of ginger were induced from young leaf segments taken from in vitro shoot cultures. Among the four auxins tested in Murashige & Skoog medium, dicamba at 2.7 M was most effective in inducing and maintaining embryogenic cultures. Efficient plant regeneration was achieved when embryogenic cultures were transferred to Murashige & Skoog medium containing 8.9 M benzyladenine. Histological studies revealed various stages of somatic embryogenesis characteristic of the monocot system. The in vitro-raised plants have been established in soil.Abbreviations BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - MS Murashige and Skoog - NAA naphthaleneacetic acid  相似文献   
142.
渍水对冬小麦生长的危害及其生理效应   总被引:7,自引:0,他引:7  
小麦受渍后叶片的光合和蒸腾速率迅速下降,而后则显微弱的回升趋势。渍害不仅削弱小麦光合产物的积累,并且改变光合产物在地上部分和根系中的分配比例;植株根/冠比下降,而黄叶的发展与根/冠比的变化呈显著负相关;渍害改变小麦的发育进程,尤其是后期渍害明显促使小麦早衰。认为清水使叶片光合速率降低、光合有效面积损失和衰老加速,从而危害小麦的生长。  相似文献   
143.
Shoot tip culture was used to eliminate white clover mosaic virus (WCMV) and red clover necrotic mosaic virus (RCNMV) from red clover, and clover phyllody disease (CP) and clover red leaf disease (CRL) from white clover. Shoot tips up to 2.4 mm (in some cases 3 mm) could regenerate plants free from the pathogens, but the efficiency of elimination, at least for WCMV and CRL, tended to decrease with increasing shoot tip size. The efficiency of plant regeneration from shoot tips generally improved with increasing tip size.  相似文献   
144.
S-ethyldipropylthiocarbamate (EPTC) applied as a soil treatment or over-the-top spray on cabbage plants (Brassica oleracea L.) caused the leaves to turn ‘glossy’ for as long as 30 days. EPTC-induced glossy plants were damaged significantly less than untreated plants by diamondback moth,Plutella xylostella (L.), imported cabbage worm,Pieris rapae (L.), and cabbage looper,Trichoplusia ni (Hbn.). Reductions in damage were equivalent to those obtained from treatment with permethrin. When used in combination with permethrin, EPTC provided additive control of damage by these pests. Our calculations show EPTC-induced resistance to be cost-effective. This use of EPTC has several limitations, however. Younger plants (<9 leaves) were killed or injured by the herbicide. The growth of older plants was not affected, but plants did not become glossy for ca. 10 days after they were treated with EPTC. The crop must be protected with insecticides until the plants are mature enough to treat with EPTC, and until treated plants become glossy. In addition, since the glossy trait is only effective against first instar larvae, populations of later instars on glossy plants must be reduced with an application of insecticide. Finally, EPTC formulations are water-soluble and can be washed away from the plants by heavy rains and irrigation, which may make this use of EPTC impractical in some situations. Where its use is practical, and the indicated precautions are taken, EPTC-induced resistance could reduce dependence on chemical insecticides and reduce selection for insecticide resistance in diamondback moth.  相似文献   
145.
The effect of some environmental factors on the lipid metabolism was studied in two chemotypes of Rosmarinus officinalis L. Epicuticular hydrocarbons (EH), epicuticular fatty acids (EFA), whole leaf fatty acids (WLFA) and essential oils (EO) were extracted and analysed by GC-MS during winter 1991–1992 and related to temperature and moisture variations. Leaf fresh and dry wts were determined along with some morphophysiological parameters such as specific leaf weight (SLW) and specific leaf area (SLA). Leaf areas were calculated by image analysis and statistically processed as for chemical data. The results indicated that in R. officinalis the response to some environmental factors, with particular reference to temperature and moisture, was an increase in epicuticular hydrocarbons and a decrease in epicuticular fatty acids, leaf fatty acids and essential oils. Qualitative changes in the chemical composition of the above lipid classes were found to be correlated with temperature changes. From a chemosystematic viewpoint, a clear separation between the two chemotypes was achieved only when epicuticular hydrocarbons and essential oils were considered as chemosystematic characters.  相似文献   
146.
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   
147.
A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta-analysis reveals that N addition (ranging from 1.08 to 113.81 g m−2 year−1) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root-shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 14.7% (11.6%–17.8%), respectively, in response to N addition. Meta-regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta-analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade-offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.  相似文献   
148.
为探究了哥王Wikstroemiaindica的叶功能性状特征及其影响因素,在海岛植被调查的基础上对了哥王叶片进行取样并测定其功能性状指标,利用变异系数法和Pearson相关性分析探讨叶功能性状之间的差异与联系,运用冗余分析研究了哥王叶功能性状对土壤因子的响应。结果表明,了哥王的叶功能性状变异系数介于9.76%~23.73%,其中叶体积变异幅度最大(23.73%),叶干物质含量变异幅度最小(9.76%),整体上了哥王叶功能性状保持相对稳定。了哥王各项叶功能性状之间具有一定的相关性,联系较密切。了哥王叶功能性状主要受土壤中有机质、全氮、碱解氮的影响,土壤中有机质、全氮、碱解氮的含量与比叶面积呈正比,与叶厚度、叶体积成反比。了哥王的叶片可以通过一定的性状变异和组合来适应外部环境的变化,以较好地适应海岛恶劣的环境。该研究结果可为了哥王野生种质资源的保护、利用以及人工栽培提供参考。  相似文献   
149.
四种主要大豆食叶害虫种群空间分布型及其应用研究   总被引:1,自引:0,他引:1  
通过分层随机与连片调查获得114个样本.利用微机分别对豆天蛾卵和豆天蛾.银纹夜蛾.棉铃虫.豆灰蝶及混合种群的幼虫.进行了4种频次分布型检验和6项聚集度指标的测定.结果表明.上述害虫在豆田内均属零集分布.中分析了聚集原因.提出了“Z”字型10样点,每样点以1/3m双行为单位的抽样方法.确立了在两种允许误差下的抽样数量.进行了序贯抽样分析。  相似文献   
150.
Two fixation fluids, two fixation techniques and two embedding methods were investigated for their effects on the quality of sections of teeth for pulpal response to filling materials to improve evaluation of pulpal responses. Sections from 32 baboon teeth were prepared, half with experimental cavities and half without, using either 10% formaldehyde or 4% glutaraldehyde, longitudinal tooth splitting or removal of the tooth apex, and paraffin or K plast resin embedding; decalcification in a formic acid mixture was a constant throughout. Histometric analysis showed that paraffin embedding produced less shrinkage than the K Plast resin embedding although the difference was not statistically significant. Six parameters of separation at the pu1p:dentine interface were studied: embedding, fixative, presence or absence of a cavity, cutting technique and individual animal tooth type. Statistical investigation revealed that fixative, cutting technique, and fixative and cutting technique combined had significant influences on the separation artifact. Of the combinations tested the choice of embedding method depends on which of the two artifacts, shrinkage or separation, is more adverse in the opinion of the investigator. Four percent glutaraldehyde together with the longitudinal split technique of fixation. processed by either K Plast resin embedding or paraffin embedding produced satisfactory pulpal sections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号