首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6488篇
  免费   685篇
  国内免费   835篇
  8008篇
  2024年   20篇
  2023年   113篇
  2022年   147篇
  2021年   174篇
  2020年   233篇
  2019年   249篇
  2018年   218篇
  2017年   253篇
  2016年   264篇
  2015年   241篇
  2014年   261篇
  2013年   405篇
  2012年   264篇
  2011年   257篇
  2010年   243篇
  2009年   257篇
  2008年   323篇
  2007年   332篇
  2006年   320篇
  2005年   278篇
  2004年   269篇
  2003年   288篇
  2002年   232篇
  2001年   229篇
  2000年   185篇
  1999年   202篇
  1998年   160篇
  1997年   180篇
  1996年   141篇
  1995年   110篇
  1994年   102篇
  1993年   102篇
  1992年   113篇
  1991年   87篇
  1990年   88篇
  1989年   81篇
  1988年   99篇
  1987年   57篇
  1986年   53篇
  1985年   75篇
  1984年   72篇
  1983年   42篇
  1982年   36篇
  1981年   32篇
  1980年   36篇
  1979年   14篇
  1978年   12篇
  1977年   17篇
  1976年   10篇
  1974年   9篇
排序方式: 共有8008条查询结果,搜索用时 15 毫秒
81.
Abstract 1 Willows are frequently attacked and defoliated by adult leaf beetles (Phratora vulgatissima L.) early in the season and the plants are then attacked again when new larvae emerge. The native willow Salix cinerea has previously been shown to respond to adult grazing by producing new leaves with an increased trichome density. Subsequent larval feeding was reduced on new leaves. This type of induced plant response may reduce insect damage and could potentially be utilized for plant protection in agricultural systems. 2 Here, we investigated if the willow species most commonly used for biomass production in short rotation coppice, Salix viminalis, also responds to adult beetle grazing by increasing trichome density. Larval performance and feeding behaviour on plants previously exposed to adult beetles was compared with that on undefoliated control plants in a greenhouse. 3 We found an overall decrease in trichome density within all the plants (i.e. trichome density was lower on new leaves compared to that for older basal leaves on S. viminalis). However, leaves of beetle defoliated plants had a higher trichome density compared to control plants. Larval growth and feeding was not affected by this difference between treatments. Larvae appeared to remove trichomes when feeding on S. viminalis, a behaviour that might explain the lack of difference between treatments.  相似文献   
82.
Leaf segments excised from Centella asiatica, a medicinal and neutraceutical plant, produced abundant somaticembryoswhen cultured onMS mediumwith 9.29 Mkinetin in combination with 2.26 M2,4-D. Granular, white,shiny clusters of callus developed after 1 week of culture, and then formed heart and cotyledonary stage embryoson the same medium after 4 weeks. Somatic embryos matured and germinated in the presence of MS mediumcontaining 2.32 M kinetin with (2.89M) GA3. Plantlets were successfully transferred to pots containing amixture of soil and vermiculite (1:1).  相似文献   
83.
防烟叶霉变菌株对烟叶霉变的影响   总被引:2,自引:0,他引:2  
为有效防止烟叶霉变,采用平板对峙培养的方法,就3个防烟叶霉变菌株对霉变菌的抑制作用进行了研究.结果表明,JMBl42、B112、B329对供试霉变菌皆表现出一定的抑制作用,对不同霉变菌的平均抑制率分别为51.6%、52.9%、53.7%.3个防烟叶霉变菌株分别以每mL 10^7、10^8、10^9 cfu(colony当当forming unit)13个浓度单独处理和每mL10。cfu浓度混合处理烟叶,结果表明,JMBl42菌株每mL10,cfu处理浓度效果最好,与对照差异极显著,其次为B112菌株每mL10^8cfu处理浓度,但它与对照差异不显著,B329菌株处理效果最差,混合施用结果与对照差异不显著.由此确定JMBl42菌株每mL10^9cfu处理浓度为仓储烟叶防霉变最佳处理参数、  相似文献   
84.
85.
1. Physiological experiments have indicated that the lower CO2 levels of the last glaciation (200 μmol mol?1) probably reduced plant water-use efficiency (WUE) and that they combined with increased aridity and colder temperatures to alter vegetation structure and composition at the Last Glacial Maximum (LGM). 2. The effects of low CO2 on vegetation structure were investigated using BIOME3 simulations of leaf area index (LAI), and a two-by-two factorial experimental design (modern/LGM CO2, modern/LGM climate).3. Using BIOME3, and a combination of lowered CO2 and simulated LGM climate (from the NCAR-CCM1 model), results in the introduction of additional xeric vegetation types between open woodland and closed-canopy forest along a latitudinal gradient in eastern North America.4. The simulated LAI of LGM vegetation was 25–60% lower in many regions of central and eastern United States relative to modern climate, indicating that glacial vegetation was much more open than today.5. Comparison of factorial simulations show that low atmospheric CO2 has the potential to alter vegetation structure (LAI) to a greater extent than LGM climate.6. If the magnitude of LAI reductions simulated for glacial North America were global, then low atmospheric CO2 may have promoted atmospheric warming and increased aridity, through alteration of rates of water and heat exchange with the atmosphere.  相似文献   
86.
This paper describes a new approach to the calibration of thermal infrared measurements of leaf temperature for the estimation of stomatal conductance and illustrates its application to thermal imaging of plant leaves. The approach is based on a simple reformulation of the leaf energy balance equation that makes use of temperature measurements on reference surfaces of known conductance to water vapour. The use of reference surfaces is an alternative to the accurate measurement of all components of the leaf energy balance and is of potentially wide application in studies of stomatal behaviour. The resolution of the technique when applied to thermal images is evaluated and some results of using the approach in the laboratory for the study of stomatal behaviour in leaves of Phaseolus vulgaris L. are presented. Conductances calculated from infrared measurements were well correlated with estimates obtained using a diffusion porometer.  相似文献   
87.
鸡蛋果叶片细胞质丙酮酸激酶(PK_c)纯化92.6倍.其最适pH为7.2,对热较稳定。PEP的K_m为0.037 mmol/L,ADP的K_m为0.05 mmol/L。ASP、Asn、Cys、α—酮戊二酸和苹果酸均对PK?有轻微的激活作用,但草酸、ATP、CaCl_2则具强烈的抑制作用。  相似文献   
88.
Binding protein (BiP) is a widely distributed and highly conserved endoplasmic-reticulum luminal protein that has been implicated in cotranslational folding of nascent polypeptides, and in the recognition and disposal of misfolded polypeptides. Analysis of cDNA sequences and genomic blots indicates that soybeans (Glycine max L. Merr.) possess a small gene family encoding BiP. The deduced sequence of BiP is very similar to that of other plant BiPs. We have examined the expression of BiP in several different terminally differentiated soybean organs including leaves, pods and seed cotyledons. Expression of BiP mRNA increases during leaf expansion while levels of BiP protein decrease. Leaf BiP mRNA is subject to temporal control, exhibiting a large difference in expression in a few hours between dusk and night. The expression of BiP mRNA varies in direct correlation with accumulation of seed storage proteins. The hybridization suggests that maturing-seed BiP is likely to be a different isoform from vegetative BiPs. Levels of BiP protein in maturing seeds vary with BiP mRNA. High levels of BiP mRNA are detected after 3 d of seedling growth. Little change in either BiP mRNA or protein levels was detected in maturing soybean pods, although BiP-protein levels decrease in fully mature pods. Persistent wounding of leaves by whiteflies induces massive overexpression of BiP mRNA while only slightly increasing BiP-protein levels. In contrast single-event puncture wounding only slightly induces additional BiP expression above the temporal variations. These observations indicate that BiP is not constitutively expressed in terminally differentiated plant organs. Expression of BiP is highest during the developmental stages of leaves, pods and seeds when their constituent cells are producing seed or vegetative storage proteins, and appears to be subject to complex regulation, including developmental, temporal and wounding.The mention of vendor or product does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over vendors of similar products not mentioned.Abbreviations BiP binding protein The sequences reported in this paper have been submitted to Gen-Bank and are identified with the accession numbers BiP-A (U08384), BiP-B (U08383), BiP-C (U08382) and -1,3 glucanase (U08405).  相似文献   
89.
90.
Dixit  Deeksha  Srivastava  N.K. 《Photosynthetica》2000,38(2):275-280
Incorporation of photosynthetically fixed 14C was studied at different time intervals of 12, 24, and 36 h in various plant parts—leaf 1 to 4 from apex, roots, and rhizome—into primary metabolites—sugars, amino acids, and organic acids, and secondary metabolites—essential oil and curcumin—in turmeric. The youngest leaves were most active in fixing 14C at 24 h. Fixation capacity into primary metabolites decreased with leaf position and time. The primary metabolite levels in leaves were maximal in sugars and organic acids and lowest in amino acids. Roots as well as rhizome received maximum photoassimilate from leaves at 24 h; this declined with time. The maximum metabolite concentrations in the roots and rhizome were high in sugars and organic acids and least in amino acids. 14C incorporation into oil in leaf and into curcumin in rhizome was maximal at 24 h and declined with time. These studies highlight importance of time-dependent translocation of 14C-primary metabolites from leaves to roots and rhizome and their subsequent biosynthesis into secondary metabolite, curcumin, in rhizome. This might be one of factors regulating the secondary metabolite accumulation and rhizome development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号