首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6440篇
  免费   674篇
  国内免费   827篇
  7941篇
  2024年   20篇
  2023年   111篇
  2022年   139篇
  2021年   168篇
  2020年   233篇
  2019年   243篇
  2018年   216篇
  2017年   251篇
  2016年   261篇
  2015年   236篇
  2014年   257篇
  2013年   392篇
  2012年   266篇
  2011年   249篇
  2010年   236篇
  2009年   258篇
  2008年   317篇
  2007年   333篇
  2006年   326篇
  2005年   279篇
  2004年   271篇
  2003年   298篇
  2002年   234篇
  2001年   234篇
  2000年   193篇
  1999年   205篇
  1998年   156篇
  1997年   185篇
  1996年   144篇
  1995年   104篇
  1994年   96篇
  1993年   104篇
  1992年   111篇
  1991年   84篇
  1990年   91篇
  1989年   79篇
  1988年   94篇
  1987年   55篇
  1986年   53篇
  1985年   70篇
  1984年   69篇
  1983年   41篇
  1982年   35篇
  1981年   32篇
  1980年   34篇
  1979年   13篇
  1978年   12篇
  1977年   17篇
  1975年   8篇
  1973年   8篇
排序方式: 共有7941条查询结果,搜索用时 8 毫秒
941.
Here, the advantages for a shrub of having long vs short-lived leaves was investigated in Rhododendron ferrugineum by following nitrogen(15N) and carbon(14C) resorption and translocation, and photosynthetic capacity over the life span. Mean leaf life span was 19 months. Nitrogen (N) resorption in attached leaves occurred mainly in the first year (23%) and reached a maximum of 31% in the second. Although, resorption was similar in attached and fallen 1-yr-old leaves, it was on average one-third higher in fallen than in attached older leaves. Final N resorption of a leaf compartment reached 41%, half occurring from healthy leaves during the first year. Photosynthetic capacity decreased slightly during the life span. Before shoot growth, plant photosynthesis was mainly supported by 1-yr-old leaves, although the contribution of the 2-yr-old leaves was nonnegligible (15% of the capacity and higher carbon transfer toward the roots). After shoot growth, the current-year leaves made the greatest contribution. Our results suggest that short-lived leaves (half of the cohort) are mainly involved in a photosynthetic function, having a high photosynthetic capacity and drawing most of their resorbed N towards current-year leaves; and long-lived leaves are also involved in a conservative function, increasing N resorption and mean residence time (MRT).  相似文献   
942.
Grote R 《The New phytologist》2007,173(3):550-561
This paper investigates the dependence of monoterpene emissions at the canopy scale on total leaf area and leaf distribution. Simulations were carried out for a range of hypothetical but realistic forest canopies of the evergreen Quercus ilex (holm oak). Two emission models were applied that either did (SIM-BIM2) or did not (G93) account for cumulative responses to temperature and light. Both were embedded into a canopy model that considered spatial and temporal variations of foliage properties. This canopy model was coupled to a canopy climate model (CANOAK) to determine the micrometeorological conditions at the leaf scale. Structural properties considerably impacted monoterpene emission. The sensitivities to changes in total leaf area and to leaf area distribution were found to be of similar magnitude. The two different models performed similarly on a whole-year basis but showed clear differences during certain episodes. The analysis showed that structural indices have to be carefully evaluated for proper scaling of emission from leaves to canopy. Further research is encouraged on seasonal dynamics of emission potentials.  相似文献   
943.
Evolutionary control of leaf element composition in plants   总被引:5,自引:1,他引:4  
Leaf nitrogen (N) and phosphorus (P) concentrations are correlated in plants. Higher-level phylogenetic effects can influence leaf N and P. By contrast, little is known about the phylogenetic variation in the leaf accumulation of most other elements in plant tissues, including elements with quantitatively lesser roles in metabolism than N, and elements that are nonessential for plant growth. Here the leaf composition of 42 elements is reported from a statistically unstructured data set comprising over 2000 leaf samples, representing 670 species and 138 families of terrestrial plants. Over 25% of the total variation in leaf element composition could be assigned to the family level and above for 21 of these elements. The remaining variation corresponded to differences between species within families, to differences between sites which were likely to be caused by soil and climatic factors, and to variation caused by sampling techniques. While the majority of variation in leaf mineral composition is undoubtedly associated with nonevolutionary factors, identifying higher-level phylogenetic variation in leaf elemental composition increases our understanding of terrestrial nutrient cycles and the transfer of toxic elements from soils to living organisms. Identifying mechanisms by which different plant families control their leaf elemental concentration remains a challenge.  相似文献   
944.
945.
Two kinds of cecidomyiid galls induced by Daphnephila on Machilus thunbergii Sieb. & Zucc. leaves at various developmental stages, i.e., young, growing, and mature, were analyzed for their biochemical composition of photosynthetic pigment-protein complexes located in thylakoid membranes using the Thornber and MARS electrophoretic fractionation systems. Both kinds of galls were totally deficient in the pigment-protein complexes CP1, and A1, AB1, and AB2 through the whole period of gall formation. Immunoblotting of antibody against light-harvesting complex 2b (LHC2b) apoprotein confirmed this deficiency in gall’s lifetime, which never recovered under any condition. Electron microscopy demonstrated that already at the early developmental stage the gall chloroplasts had thylakoid morphology like that in a normal leaf.  相似文献   
946.
Lieberei R 《Annals of botany》2007,100(6):1125-1142
BACKGROUND: Rubber trees (Hevea spp.) are perennial crops of Amazonian origin that have been spread over the whole tropical belt to guarantee worldwide production of natural rubber. This crop plant has found its place in many national economies of producing countries, and although its domestication by selection of suitable genotypes was very slow, it contributes a lot to the welfare of small farmers worldwide. Its development is limited by severe diseases. In South America, the main fungal disease of rubber trees is the South American leaf blight (SALB) caused by the ascomycete Microcyclus ulei. This fungus inhibits natural rubber production on a commercial scale in South and Central America. SCOPE: The disease is still restricted to its continent of origin, but its potential to be distributed around the world rises with every transcontinental airline connection that directly links tropical regions. The need to develop control measures against the disease is an urgent task and must be carried out on an international scale. All control efforts so far taken since 1910 have ended in a miserable failure. Even the use of modern systemic fungicides and use of greatly improved application techniques have failed to prevent large losses and dieback of trees. The results of research dealing with both the disease and the pathosystem over more than 50 years are summarized and placed into perspective. FUTURE PROSPECTS: A detailed knowledge of this host-pathogen combination requires understanding of the dynamics of Hevea leaf development, the biochemical potential for cyanide liberation, and molecular data for several types of resistance factors. Resolution of the Hevea-SALB problem may serve as a model for future host-pathogen studies of perennial plants requiring a holistic approach.  相似文献   
947.
BACKGROUND AND AIMS: By using the technique of replicas of a developing apex it is possible to obtain a direct measure of phyllotactic parameters (plastochrone and platochronic ratio) involved in the initiation of two successive primordia at the level of the SAM. The goal of this study is to compare, in a real time setting, the value of phyllotactic parameters in distichous systems using Begonia as a case study, with the value of the same parameters in spiral phyllotactic systems. METHODS: To determine the real-time sequence of events at the level of the SAM, replicas were made of the developing apex at different intervals using previously described techniques. Impression moulds were made at 24-h intervals. The following phyllotactic parameters were measured: plastochrone, angle of divergence, plastochrone ratio and ratio between the diameter of the leaf and the apex. RESULTS: The time between the appearance of two successive leaves is 15-20 d. The average value of the plastochrone ratio (R) is 1.3, and the ratio of the leaf to the diameter of the apex (Gamma) is 2.5. The angle of divergence varies from 165 masculine to 180 masculine. The speed of advection of the primordium from the apex, varies from 0.28 to 0.37 microm d(-1). CONCLUSIONS: The speed of advection of primordia in Begonia is lower than that of Anagalis. This is not in accordance with theoretical simulations that predict the opposite. In Begonia, the plastochrone ratio does not reflect the real time of appearance of two successive primordia. The time separating the appearance of two primordia is not directly related to the distance of these two primordia from the centre of the apex but is related instead to the enlargement of leaves.  相似文献   
948.
水葫芦叶蛋白开发研究现状及发展趋势   总被引:2,自引:0,他引:2  
本文概括了水葫芦叶蛋白开发研究现状,包括水葫芦叶蛋白的营养价值、提取工艺、毒性和功能性质评价。并预测了水葫芦叶蛋白研究的发展趋势。  相似文献   
949.
950.
Three-year-old beech (Fagus sylvatica) seedlings growing in containers were placed into the sun and shade crown of a mature beech stand exposed to ambient (1 x O(3)) and double ambient (2 x O(3)) ozone concentrations at a free-air exposure system ("Kranzberg Forst", Germany). Pigments, alpha-tocopherol, glutathione, ascorbate, and gas exchange were measured in leaves during 2003 (a drought year) and 2004 (an average year). Sun-exposed seedlings showed higher contents of antioxidants, xanthophylls, and beta-carotene and lower contents of chlorophyll, alpha-carotene, and neoxanthin than shade-exposed seedlings. In 2003 sun-exposed seedlings showed higher contents of carotenoids and total glutathione and lower net photosynthesis rates (A(max)) compared to 2004. O(3) exposure generally affected the content of chlorophyll, the xanthophyll cycle, and the intercellular CO(2) concentration (c(i)). Seedlings differed from the adjacent adult trees in most biochemical and physiological parameters investigated: Sun exposed seedlings showed higher contents of alpha-tocopherol and xanthophylls and lower contents of ascorbate, chlorophyll, neoxanthin, and alpha-carotene compared to adult trees. Shade exposed seedlings had lower contents of xanthophylls, alpha-carotene, and alpha-tocopherol than shade leaves of old-growth trees. In 2003, seedlings had higher A(max), stomatal conductance (g(s)), and c(i) under 2 x O(3) than adult trees. The results showed that shade acclimated beech seedlings are more sensitive to O(3), possibly due to a lower antioxidative capacity per O(3) uptake. We conclude that beech seedlings are uncertain surrogates for adult beech trees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号