首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6440篇
  免费   677篇
  国内免费   824篇
  7941篇
  2024年   20篇
  2023年   111篇
  2022年   139篇
  2021年   168篇
  2020年   233篇
  2019年   243篇
  2018年   216篇
  2017年   251篇
  2016年   261篇
  2015年   236篇
  2014年   257篇
  2013年   392篇
  2012年   266篇
  2011年   249篇
  2010年   236篇
  2009年   258篇
  2008年   317篇
  2007年   333篇
  2006年   326篇
  2005年   279篇
  2004年   271篇
  2003年   298篇
  2002年   234篇
  2001年   234篇
  2000年   193篇
  1999年   205篇
  1998年   156篇
  1997年   185篇
  1996年   144篇
  1995年   104篇
  1994年   96篇
  1993年   104篇
  1992年   111篇
  1991年   84篇
  1990年   91篇
  1989年   79篇
  1988年   94篇
  1987年   55篇
  1986年   53篇
  1985年   70篇
  1984年   69篇
  1983年   41篇
  1982年   35篇
  1981年   32篇
  1980年   34篇
  1979年   13篇
  1978年   12篇
  1977年   17篇
  1975年   8篇
  1973年   8篇
排序方式: 共有7941条查询结果,搜索用时 15 毫秒
51.
Differences in the relative growth rules of the inherently slow-growing Deschampsia flexuosa L. and the inherently fast-growing Holcus lanatus L. were reflected in cell wall synthesis in the elongation zone of the leaves. Leaf elongation rates depended on the size of the plant and ranged from 6 to 14 mm d?1 in Deschampsia and from 12 to 42 mm d?1 in Holcus. Anatomical data showed that the epidermis and vascular tissue are the important tissues controlling leaf extension. The cell wall polysaccharides of fully expanded leaves of the two species were identical in sugar composition. Enzymatic hydrolysis of polymeric sugars in the cell walls of the sheath and the lamina gave glucose (85%), arabinose (3.5%), fucose (0.5%), xylose (5.0%), mannose (0.5%), galaclose (0.8%) and galacturonic acid (3–4%). This composition applied throughout the blade and the sheath and did not change with ageing. Polysaccharides in the meristems of the two species showed identical sugar compositions with 51–55% glucose, 13–15% galactoronic acid and 13–14% arabinose as the main components. The extension zone was marked by a gradual increase of driselase-digestable polymers (per mm tissue) and a concurrent shift in sugar composition. The massive increase of glucose in the cell wall polymers of the elongation zone is probably caused by cellulose synthesis. The rate of synthesis of cell wall polysaccharides in Holcus was twice as high as that in Deschampsia. The slower-growing Deschampsia has more ferulic acid esterified with cell walls, which might contribute to the slowing of leaf growth. Lignin is not significantly deposited until growth has essentially ceased and is not responsible for the difference in growth rate.  相似文献   
52.
Absorption or screening of ultraviolet-B (UV-B) radiation by the epidermis may be an important protective method by which plants avoid damage upon exposure to potentially harmful UV-B radiation. In the present study we examined the relationships among epidermal screening effectiveness, concentration of UV-absorbing compounds, epidermal anatomy and growth responses in seedlings of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.). Seedlings of each species were grown in a greenhouse at the University of Maryland under either no UV-B radiation or daily supplemental UV-B radiation levels of 4, 8 or 11 kJ m?2 of biologically effective UV-B (UV-BBE) radiation. Loblolly pine seedlings were subsequently grown in the field under either ambient or supplemental levels of UV-B radiation. At the conclusion of the growing season, measurements of epidermal UV-B screening effectiveness were made with a fiber-optic microprobe. In loblolly pine, less than 0.5% of incident UV-B radiation was transmitted through the epidermis of fascicle needles and about 1% was transmitted in primary needles. In contrast, epidermal transmittance in sweetgum ranged from about 20% in leaves not preconditioned to UV-B exposure, to about 10% in leaves grown under UV-B radiation. The concentration of UV-absorbing compounds was unaffected by UV-B exposure, but generally increased with leaf age. Increases in epidermal thickness were observed in response to UV-B treatment in loblolly pine, and this accounted for over half of the variability in UV-B screening effectiveness. In spite of the low levels of UV-B penetration into the mesophyll, delays in leaf development (both species) and final needle size (loblolly pine) were observed. Seedling biomass was reduced by supplemental UV-B radiation in loblolly pine. We hypothesize that the UV-induced growth reductions were manifested by changes in either epidermal anatomy or epidermal secondary chemistry that might negatively impact cell elongation.  相似文献   
53.
Given the influence of photoperiod on reproductive development and whole-plant senescence in monocarpic plants, one would suspect that leaf senescence in these plants might be under photoperiodic control. In Arabidopsis thaliana , which is monocarpic and also a nonobligate long-day (LD) plant, LDs (16 h, 300 μmol m−2 s−1) caused leaves to die earlier than did short days (SDs, 10 h). Since leaf longevity was not paralleled by the reproductive development in the present study, the reproductive structures did not seem to be the primary controls of leaf senescence. The LD effect appeared to depend on the amount of light rather than on day length, for leaves given LDs at reduced light intensity (180 μmol m−2 s−1) lived longer than those in LDs with full light. In addition, the higher light intensity promoted chlorophyll loss and anthocyanin accumulation in LDs. Thus, senescence of these leaves seems to be governed by light dosage rather than photoperiod. Light may play a natural role in promoting the senescence of A. thaliana leaves.  相似文献   
54.
Turnover of organic nitrogen in soils and its availability to crops   总被引:4,自引:0,他引:4  
K. Mengel 《Plant and Soil》1996,178(1):83-93
The root development of barley seedlings grown for one week in an aerated nutrient solution was studied in the presence of dissolved organic matter from an aqueous chestnut leaf litter extract. In particular, the different effects of low and high molecular weight fractions (small molecules: molecular weight <1000; large molecules: >10,000) of the leaf litter extract were examined. In the presence of large molecules root growth was inhibited, an irregular root tip morphology was observed, and Ca and Mg concentrations in the shoots were lower than in control plants. These phytotoxic effects were not caused by the formation of an impermeable layer of large molecules on the root surfaces that lower accessibility for nutrient cations as inferred from voltammetric experiments. A germination assay using spruce seeds, however, indicated allelochemical effects of large molecules, which exhibit a higher aromaticity than the small molecules as indicated by spectroscopic characterisation. In the growth experiments with small molecules, no influence on the root development of barley was evident, but an increase of Ca and Mg in the shoots was detected. During these growth experiments, a large amount of the small molecules, mainly simple phenols and amino acids, disappeared from the nutrient solution. The loss of small molecules was most likely the effect of mineralisation.Abbreviations DOC dissolved organic carbon - DOM dissolved organic matter - LLE leaf litter extract - MW molecular weight - HMDE hanging mercury drop electrode  相似文献   
55.
The current study investigated the short-term physiological implications of plant nitrogen uptake of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) under both greenhouse and field conditions. 15N labelled urea amended with 0.0, 0.01, 0.1 and 0.5% nBTPT (w/w) was surface applied at a rate equivalent to 100 kg N ha–1 to perennial ryegrass in a greenhouse pot experiment. Root, shoot and soil fractions were destructively harvested 0.75, 1.75, 4, 7 and 10 days after fertilizer application. Urease activity was determined in each fraction together with 15N recovery and a range of chemical analyses. The effect of nBTPT amended urea on leaf tip scorch was evaluated together with the effect of the inhibitor applied on its own on plant urease activity.nBTPT-amended urea dramatically reduced shoot urease activity for the first few days after application compared to unamended urea. The higher the nBTPT concentration the longer the time required for shoot activity to return to that in the unamended treatment. At the highest inhibitor concentration of 0.5% shoot urease activity had returned to that of unamended urea by 10 days. Root urease activity was unaffected by nBTPT in the presence of urea but was affected by nBTPT in the absence of urea.Transient leaf tip scorch was observed approximately 7–15 days after nBTPT + urea application and was greatest with high concentrations of nBTPT and high urea-N application rates. New developing leaves showed no visual sign of tip necrosis.Urea hydrolysis of unamended urea was rapid with only 1.3% urea-N remaining in the soil after 1.75 days. N uptake and metabolism by ryegrass was rapid with 15N recovery from unamended urea, in the plant (shoot + root) being 33% after 1.75 days. Most of the 15N in the soil following the urea+0.5% nBTPT application was still as urea after 1.75 days, yet 15N plant recovery at this time was 25% (root+shoot). This together with other evidence, suggests that if urea hydrolysis in soil is delayed by nBTPT then urea can be taken up by ryegrass as the intact molecule, albeit at a significantly slower initial rate of uptake than NH4 +-N. Protein and water soluble carbohydrate content of the plant were not significantly affected by amending urea with nBTPT however, there was a significant effect on the composition of amino acids in the roots and shoots, suggesting a difference in metabolism.Although nBTPT-amended urea affected plant urease activity and caused some leaf-tip scorch the effects were transient and short-lived. The previously reported benefit of nBTPT in reducing NH3 volatilization of urea would appear to far outweigh any of the observed short-term effects, as dry-matter production of ryegrass is increased.  相似文献   
56.
Impact of initial density of cowpea aphid Aphis craccivora Koch (Aphididae) at infestation on the growth and yield of aphid-susceptible cowpea cultivar ICV-1 and aphid-resistant cultivar ICV-12, was investigated. Plants at the seedling, flowering and podding stages of development were infested with five aphid densities consisting of 0, 2, 5, 10 and. 20 aphids per plant and maintained for 22 days. Extended leaf heights of plants and aphid counts were recorded at 7, 12, 17 and 22 days after infestation. Two crop growth parameters (biomass duration and leaf area duration), and two plant yield parameters (number of pods per plant and number of seeds per pod) were recorded. Due to the occurrence of parthenogenesis and changes in population dynamics during infestations, aphid densities were converted into cumulative cowpea aphid-days, to facilitate data analyses and interpretation. ANOVA indicated that there was significant (P=s 0.05) difference in aphid-day accumulations between the two cultivars when infested at the seedling stage. Accumulations on cv. ICV-1 were greater than on cv. ICV-12. However, no such differences between the cultivars were detected when plants were infested at flowering and podding stages. Therefore, the seedling stage was used for comparisons of the impact of cowpea aphid-days on the growth and yield parameters of the two cultivars. At the 95% confidence intervals, ICV-12 plants were consistently taller than ICV-1 plants. Infested ICV-1 seedlings showed stunting and other growth deformities which were not observed on ICV-12 plants. Regression analyses revealed substantial reductions in the growth and yield parameters of ICV-1 relative to ICV-12. Overall, cowpea aphid-days provided a convenient and reliable method for studying the aphid population dynamics and the subsequent impact on plant growth and yield performance.  相似文献   
57.
Assessing functional multidrug resistance (MDR) status in clinical biopsy material using drug autofluorescence has potential applications to clinical management. The small size of many cystoscopy specimens has led us to develop, as an alternative to flow cytometry, a protocol for studying epirubicin accumulation in adherent colonies of primary bladder cancer cells viewed live andin situ by confocal microscopy. The limitations to quantitation inherent in this technique are compensated for by preservation of cellular organisation and the elimination of non-malignant cells. Biopsy material is disaggregated and explanted into culture-grade petri dishes. After incubation for three to seven days plaques of epithelial cells have developed. Classical patterns of sensitive and resistant drug distribution are observed. Cells of the rolled edges of the colony accumulate more drug than those of the inner epithelial monolayer. Some central areas of larger colonies give the appearance of drug arrested at the intercellular junctions to give a fenestrated pattern. These observations contribute to the understanding of mechanisms in MDR as well as forming the basis for a clinical urological MDR evaluation protocol.  相似文献   
58.
Abstract The influence of soil moisture content on leaf dynamics and insect herbivory was examined between September 1991 and March 1992 in a river red gum (Eucalyptus camaldulensis) forest in southern central New South Wales. Long-term observations of leaves were made in trees standing either within intermittently flooded waterways or at an average of 37. 5m from the edge of the waterways. The mean soil moisture content was significantly (P≤0.05) greater in the waterways than in the non-flooded areas. Trees in the higher soil moisture regime produced significantly larger basal area increments and increased canopy leaf area. This increase in canopy leaf area was achieved, in part, through a significant increase in leaf longevity and mean leaf size. Although a greater number of leaves was initiated and abscissed per shoot from the non-flooded trees, more leaves were collected from litter traps beneath the denser canopies of the flooded trees. Consumption of foliage by insects on the trees subjected to flooding compared to the non-flooded trees was not significantly different. However, the relative impact of insect herbivory was significantly greater on the non-flooded trees. Leaf chewing was the most common form of damage by insects, particularly Chryso-melidae and Curculionidae. No species was present in outbreak during this study. Leaf survival decreased as the per cent area eaten per leaf increased. In addition, irrespective of the level of herbivory, leaf abscission tended to be higher in E. camaldulensis under moisture deficit. The influence of soil moisture content on the balance between river red gum growth and insect herbivory is discussed.  相似文献   
59.
The nucleotide sequence and derived amino acid sequence were determined for a full-length version of the tomato cDNA clone, pTOM75, the mRNA for which has previously been shown to accumulate in roots, ripening fruit and senescing leaves. Computer analysis of the predicted protein product, which we have named tomato ripening-associated membrane protein (TRAMP) indicates strong homology to known transmembrane channel proteins from other organisms. Northern analysis showed that this gene was induced by waterstress and that this induction was unaffected in an ABA-deficient genetic back-ground.  相似文献   
60.
Paclobutrazol [(2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol], a triazole growth retardant, increased the 1-aminocyclopropane-1-carboxylic acid (ACC) level and resulted in reduced ethylene production, estimated as ethylene release in a closed system or by vacuum-extraction, in the primary leaves of Phaseolus vulgaris L. cv. Juliska seedlings exposed to light. At the light/dark transition, a definite enhancement of the endogenous ethylene level was observed by vacuum-extraction of primary leaves of treated plants and the ethylene deficiency of retardant-treated leaves ceased. The concentration of ACC after the light/dark transition followed the pattern for ethylene, and the increase in ACC content was paralleled by a decrease in malonyl-ACC.
It is concluded that the internal level of ethylene is not necessarily lower in the primary leaves of paclobutrazol-treated bean plants, but under special environmental conditions in vivo it may reach that of the control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号