首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6440篇
  免费   682篇
  国内免费   818篇
  2024年   19篇
  2023年   111篇
  2022年   139篇
  2021年   168篇
  2020年   233篇
  2019年   243篇
  2018年   216篇
  2017年   251篇
  2016年   261篇
  2015年   236篇
  2014年   257篇
  2013年   392篇
  2012年   266篇
  2011年   249篇
  2010年   236篇
  2009年   258篇
  2008年   317篇
  2007年   333篇
  2006年   326篇
  2005年   279篇
  2004年   271篇
  2003年   298篇
  2002年   234篇
  2001年   234篇
  2000年   193篇
  1999年   205篇
  1998年   156篇
  1997年   185篇
  1996年   144篇
  1995年   104篇
  1994年   96篇
  1993年   104篇
  1992年   111篇
  1991年   84篇
  1990年   91篇
  1989年   79篇
  1988年   94篇
  1987年   55篇
  1986年   53篇
  1985年   70篇
  1984年   69篇
  1983年   41篇
  1982年   35篇
  1981年   32篇
  1980年   34篇
  1979年   13篇
  1978年   12篇
  1977年   17篇
  1975年   8篇
  1973年   8篇
排序方式: 共有7940条查询结果,搜索用时 31 毫秒
161.
绞股兰的茎段和叶碎片外植体可在合适的激素调节诱导下形成愈伤组织.通过含有不同水平激素的MS培养基对绞股兰愈伤组织诱导试验,经统计学分析,可以找出对绞股兰脱分化形成愈伤组织细胞影响显著的激素及其适宜的激素水平.  相似文献   
162.
System-level adjustments to elevated CO2 in model spruce ecosystems   总被引:6,自引:0,他引:6  
Atmospheric carbon dioxide enrichment and increasing nitrogen deposition are often predicted to increase forest productivity based on currently available data for isolated forest tree seedlings or their leaves. However, it is highly uncertain whether such seedling responses will scale to the stand level. Therefore, we studied the effects of increasing CO2 (280, 420 and 560 μL L-1) and increasing rates of wet N deposition (0, 30 and 90 kg ha-1 y-1) on whole stands of 4-year-old spruce trees (Picea abies). One tree from each of six clones, together with two herbaceous understory species, were established in each of nine 0.7 m2 model ecosystems in nutrient poor forest soil and grown in a simulated montane climate for two years. Shoot level light-saturated net photosynthesis measured at growth CO2 concentrations increased with increasing CO2, as well as with increasing N deposition. However, predawn shoot respiration was unaffected by treatments. When measured at a common CO2 concentration of 420 μL L-1 37% down-regulation of photosynthesis was observed in plants grown at 560 μL CO2 L-1. Length growth of shoots and stem diameter were not affected by CO2 or N deposition. Bud burst was delayed, leaf area index (LAI) was lower, needle litter fall increased and soil CO2 efflux increased with increasing CO2. N deposition had no effect on these traits. At the ecosystem level the rate of net CO2 exchange was not significantly different between CO2 and N treatments. Most of the responses to CO2 studied here were nonlinear with the most significant differences between 280 and 420 μL CO2 L-1 and relatively small changes between 420 and 560 μL CO2 L-1. Our results suggest that the lack of above-ground growth responses to elevated CO2 is due to the combined effects of physiological down-regulation of photosynthesis at the leaf level, allometric adjustment at the canopy level (reduced LAI), and increasing strength of below-ground carbon sinks. The non-linearity of treatment effects further suggests that major responses of coniferous forests to atmospheric CO2 enrichment might already be under way and that future responses may be comparatively smaller.  相似文献   
163.
应用离体叶片法,对9个棉花种质进行了鉴定,试验结果表明;种质间抗生性和忌避性差异显著;同株棉花不同部位的叶片对朱砂叶螨的抗生性无显著性差异。通过对叶螨在不同棉花种质上种群增长动态进行系统聚类,可将9个棉花种质划分为3类:斯字棉825-91、杞县86789、鄂棉314、苏联8911为1类,中棉164、潼南接龙棉、新库861517-2、南农NAC90-2为1类,美棉7-15独立为1类。依据朱砂叶螨在不同种质上的种群增长曲线和高峰期螨量增长倍数,可将9个种质划分为3个类型;斯字棉825-91、新库861517-2为抗性类型,潼南接龙棉、美棉7-15、南农NAC90-2为感性类型,其余为中抗类型。从忌避性看:斯字棉825-91、美棉7-15表现出较高的忌避性。  相似文献   
164.
Binding protein (BiP) is a widely distributed and highly conserved endoplasmic-reticulum luminal protein that has been implicated in cotranslational folding of nascent polypeptides, and in the recognition and disposal of misfolded polypeptides. Analysis of cDNA sequences and genomic blots indicates that soybeans (Glycine max L. Merr.) possess a small gene family encoding BiP. The deduced sequence of BiP is very similar to that of other plant BiPs. We have examined the expression of BiP in several different terminally differentiated soybean organs including leaves, pods and seed cotyledons. Expression of BiP mRNA increases during leaf expansion while levels of BiP protein decrease. Leaf BiP mRNA is subject to temporal control, exhibiting a large difference in expression in a few hours between dusk and night. The expression of BiP mRNA varies in direct correlation with accumulation of seed storage proteins. The hybridization suggests that maturing-seed BiP is likely to be a different isoform from vegetative BiPs. Levels of BiP protein in maturing seeds vary with BiP mRNA. High levels of BiP mRNA are detected after 3 d of seedling growth. Little change in either BiP mRNA or protein levels was detected in maturing soybean pods, although BiP-protein levels decrease in fully mature pods. Persistent wounding of leaves by whiteflies induces massive overexpression of BiP mRNA while only slightly increasing BiP-protein levels. In contrast single-event puncture wounding only slightly induces additional BiP expression above the temporal variations. These observations indicate that BiP is not constitutively expressed in terminally differentiated plant organs. Expression of BiP is highest during the developmental stages of leaves, pods and seeds when their constituent cells are producing seed or vegetative storage proteins, and appears to be subject to complex regulation, including developmental, temporal and wounding.The mention of vendor or product does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over vendors of similar products not mentioned.Abbreviations BiP binding protein The sequences reported in this paper have been submitted to Gen-Bank and are identified with the accession numbers BiP-A (U08384), BiP-B (U08383), BiP-C (U08382) and -1,3 glucanase (U08405).  相似文献   
165.
Samples of current-year and 1-year-old foliage were taken from Norway spruce (Picea abies (L.) Karst.) trees in April 1991, 4 months after a 3–4 year controlled fumigation with O3 and SO2 in the open at Liphook, south-east England. Trees were grown in seven plots, and treated in a factorial design with three levels of SO2 and two levels of O3 (ambient and c. 1.3 × ambient), with an extra ambient air plot. All statistical analyses were made on plot means. Leaf wettability, as measured by the contact angle of water droplets, was significantly affected by needle age and by SO2 treatment (P≤0–05. in older needles, decreasing with increasing SO2 concentration. There was no effect of O3 on wettability, and no effect of any treatment on amounts of surface wax extracted by immersion of needles in chloroform. Electrolyte leakage rates from detached current-year needles were not affected by prior exposure to O3, but decreased significantly (P= 0.034) with increasing exposure to SO2. There was no detectable effect of fumigation on the rate of water loss from detached needles. Similarly, there was no effect of fumigation on the dry weight/fresh weight ratio of needles. The total sulphur content of needles increased significantly (P≤0.0001) with exposure to SO2 and with needle age. Amounts of water-extractable sulphate, however, varied greatly among plots, but with no pattern with respect to fumigation treatment. It is concluded that leaf wettability and electrolyte leakage rates may be good indicators of the persistent effects of SO2 on Norway spruce growing in the open air, and that the observed changes in leaf surface properties in response to SO2 fumigation have implications for the processes, both biotic and abiotic, that occur on leaf surfaces.  相似文献   
166.
Ozone pollution may reduce net carbon gain in forests, yet data from mature trees are rare and the effects of irradiance on the response of photosynthesis to ozone remain untested. We used an open-air system to expose 10 branches within the upper canopy of an 18-m-tall stand of sugar maple (Acer saccharum Marsh.) to twice-ambient concentrations of ozone (95nmol mol?1, 0900 to 1700, 1 h mean) relative to 10 paired, untreated controls (45nmol mol?1) over 3 months. The branch pairs were selected along a gradient from relatively high irradiance (PPFD 14.5 mol m?2 d?1) to deep shade (0.7mol m?2 d?1). Ozone reduced light-saturated rates of net photosynthesis (Asat) and increased dark respiration by as much as 56 and 40%, respectively. Compared to sun leaves, shade leaves exhibited greater proportional reductions in Asat and had lower chlorophyll concentrations, quantum efficiencies, and leaf absorptances when treated with ozone relative to controls. With increasing ozone dose over time, Asat became uncoupled from stomatal conductance as ratios of internal to external concentrations of carbon dioxide increased, reducing water-use efficiency. Ozone reduced net photosynthesis and impaired stomatal function, with these effects depending on the irradiance environment of the canopy leaves. Increased ozone sensitivity of shade leaves compared to sun leaves has consequences for net carbon gain in canopies.  相似文献   
167.
Temporal variations in the δ18 oxygen (δ18O) content of water transpired by leaves during a simulated diurnal cycle fluctuated around the δ18O content of the source water. Reconstructed variations in the δ18O values of leaf water differed markedly from those predicted by conventional models. Even when transpiring leaves were maintained under constant conditions for at least 3 h, strict isotopic steady-state conditions of leaf water (equality of the 18O/16O ratios in the input and transpired water) were rarely attained in a variety of plant species (Citrus reticu-lata, Citrus paradisi, Gossypium hirsutum, Helianthus annuns, Musa musaceae and Nicotinia tabacum). Isotopic analysis of water transpired by leaves indicated that leaves approach the isotopic steady state in two stages. The first stage takes 10 to 35 min (with a rate of change of about 3–3%h?1), while in the second stage further approach to the isotopic steady state is asymptotic (with a rate of change of about 0–4% h?1), and under conditions of low transpiration leaves can last for many hours. Substantial spatial isotopic heterogeneity was maintained even when leaves were at or near isotopic steady state. An underlying pattern in this isotopic heterogeneity is often discerned with increasing 18O/16O ratios from base to tip, and from the centre to the edges of the leaves. It is also shown that tissue water along these spatial isotopic gradients, as well as the average leaf water, can have 18O/16O ratios both lower and higher than those predicted by the conventional Craig and Gordon model. We concluded, first, that at any given time during the diurnal cycle of relative humidity the attainment of an isotopic steady state in leaf water cannot be assumed a priori and, secondly, that the isotopic enrichment pattern of leaf water reflects gradual enrichment along the water-flow pathway (e.g. as in a string of pools), rather than a single-step enrichment from source water, as is normally assumed.  相似文献   
168.
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号