首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7867篇
  免费   794篇
  国内免费   862篇
  9523篇
  2024年   23篇
  2023年   138篇
  2022年   161篇
  2021年   210篇
  2020年   285篇
  2019年   283篇
  2018年   260篇
  2017年   288篇
  2016年   298篇
  2015年   291篇
  2014年   318篇
  2013年   480篇
  2012年   302篇
  2011年   310篇
  2010年   282篇
  2009年   317篇
  2008年   383篇
  2007年   395篇
  2006年   391篇
  2005年   330篇
  2004年   331篇
  2003年   349篇
  2002年   286篇
  2001年   278篇
  2000年   212篇
  1999年   235篇
  1998年   193篇
  1997年   210篇
  1996年   162篇
  1995年   136篇
  1994年   119篇
  1993年   122篇
  1992年   136篇
  1991年   108篇
  1990年   108篇
  1989年   91篇
  1988年   107篇
  1987年   72篇
  1986年   63篇
  1985年   80篇
  1984年   84篇
  1983年   41篇
  1982年   40篇
  1981年   48篇
  1980年   53篇
  1979年   27篇
  1978年   17篇
  1977年   31篇
  1976年   11篇
  1973年   8篇
排序方式: 共有9523条查询结果,搜索用时 15 毫秒
61.
Given the influence of photoperiod on reproductive development and whole-plant senescence in monocarpic plants, one would suspect that leaf senescence in these plants might be under photoperiodic control. In Arabidopsis thaliana , which is monocarpic and also a nonobligate long-day (LD) plant, LDs (16 h, 300 μmol m−2 s−1) caused leaves to die earlier than did short days (SDs, 10 h). Since leaf longevity was not paralleled by the reproductive development in the present study, the reproductive structures did not seem to be the primary controls of leaf senescence. The LD effect appeared to depend on the amount of light rather than on day length, for leaves given LDs at reduced light intensity (180 μmol m−2 s−1) lived longer than those in LDs with full light. In addition, the higher light intensity promoted chlorophyll loss and anthocyanin accumulation in LDs. Thus, senescence of these leaves seems to be governed by light dosage rather than photoperiod. Light may play a natural role in promoting the senescence of A. thaliana leaves.  相似文献   
62.
Turnover of organic nitrogen in soils and its availability to crops   总被引:4,自引:0,他引:4  
K. Mengel 《Plant and Soil》1996,178(1):83-93
The root development of barley seedlings grown for one week in an aerated nutrient solution was studied in the presence of dissolved organic matter from an aqueous chestnut leaf litter extract. In particular, the different effects of low and high molecular weight fractions (small molecules: molecular weight <1000; large molecules: >10,000) of the leaf litter extract were examined. In the presence of large molecules root growth was inhibited, an irregular root tip morphology was observed, and Ca and Mg concentrations in the shoots were lower than in control plants. These phytotoxic effects were not caused by the formation of an impermeable layer of large molecules on the root surfaces that lower accessibility for nutrient cations as inferred from voltammetric experiments. A germination assay using spruce seeds, however, indicated allelochemical effects of large molecules, which exhibit a higher aromaticity than the small molecules as indicated by spectroscopic characterisation. In the growth experiments with small molecules, no influence on the root development of barley was evident, but an increase of Ca and Mg in the shoots was detected. During these growth experiments, a large amount of the small molecules, mainly simple phenols and amino acids, disappeared from the nutrient solution. The loss of small molecules was most likely the effect of mineralisation.Abbreviations DOC dissolved organic carbon - DOM dissolved organic matter - LLE leaf litter extract - MW molecular weight - HMDE hanging mercury drop electrode  相似文献   
63.
The current study investigated the short-term physiological implications of plant nitrogen uptake of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) under both greenhouse and field conditions. 15N labelled urea amended with 0.0, 0.01, 0.1 and 0.5% nBTPT (w/w) was surface applied at a rate equivalent to 100 kg N ha–1 to perennial ryegrass in a greenhouse pot experiment. Root, shoot and soil fractions were destructively harvested 0.75, 1.75, 4, 7 and 10 days after fertilizer application. Urease activity was determined in each fraction together with 15N recovery and a range of chemical analyses. The effect of nBTPT amended urea on leaf tip scorch was evaluated together with the effect of the inhibitor applied on its own on plant urease activity.nBTPT-amended urea dramatically reduced shoot urease activity for the first few days after application compared to unamended urea. The higher the nBTPT concentration the longer the time required for shoot activity to return to that in the unamended treatment. At the highest inhibitor concentration of 0.5% shoot urease activity had returned to that of unamended urea by 10 days. Root urease activity was unaffected by nBTPT in the presence of urea but was affected by nBTPT in the absence of urea.Transient leaf tip scorch was observed approximately 7–15 days after nBTPT + urea application and was greatest with high concentrations of nBTPT and high urea-N application rates. New developing leaves showed no visual sign of tip necrosis.Urea hydrolysis of unamended urea was rapid with only 1.3% urea-N remaining in the soil after 1.75 days. N uptake and metabolism by ryegrass was rapid with 15N recovery from unamended urea, in the plant (shoot + root) being 33% after 1.75 days. Most of the 15N in the soil following the urea+0.5% nBTPT application was still as urea after 1.75 days, yet 15N plant recovery at this time was 25% (root+shoot). This together with other evidence, suggests that if urea hydrolysis in soil is delayed by nBTPT then urea can be taken up by ryegrass as the intact molecule, albeit at a significantly slower initial rate of uptake than NH4 +-N. Protein and water soluble carbohydrate content of the plant were not significantly affected by amending urea with nBTPT however, there was a significant effect on the composition of amino acids in the roots and shoots, suggesting a difference in metabolism.Although nBTPT-amended urea affected plant urease activity and caused some leaf-tip scorch the effects were transient and short-lived. The previously reported benefit of nBTPT in reducing NH3 volatilization of urea would appear to far outweigh any of the observed short-term effects, as dry-matter production of ryegrass is increased.  相似文献   
64.
Impact of initial density of cowpea aphid Aphis craccivora Koch (Aphididae) at infestation on the growth and yield of aphid-susceptible cowpea cultivar ICV-1 and aphid-resistant cultivar ICV-12, was investigated. Plants at the seedling, flowering and podding stages of development were infested with five aphid densities consisting of 0, 2, 5, 10 and. 20 aphids per plant and maintained for 22 days. Extended leaf heights of plants and aphid counts were recorded at 7, 12, 17 and 22 days after infestation. Two crop growth parameters (biomass duration and leaf area duration), and two plant yield parameters (number of pods per plant and number of seeds per pod) were recorded. Due to the occurrence of parthenogenesis and changes in population dynamics during infestations, aphid densities were converted into cumulative cowpea aphid-days, to facilitate data analyses and interpretation. ANOVA indicated that there was significant (P=s 0.05) difference in aphid-day accumulations between the two cultivars when infested at the seedling stage. Accumulations on cv. ICV-1 were greater than on cv. ICV-12. However, no such differences between the cultivars were detected when plants were infested at flowering and podding stages. Therefore, the seedling stage was used for comparisons of the impact of cowpea aphid-days on the growth and yield parameters of the two cultivars. At the 95% confidence intervals, ICV-12 plants were consistently taller than ICV-1 plants. Infested ICV-1 seedlings showed stunting and other growth deformities which were not observed on ICV-12 plants. Regression analyses revealed substantial reductions in the growth and yield parameters of ICV-1 relative to ICV-12. Overall, cowpea aphid-days provided a convenient and reliable method for studying the aphid population dynamics and the subsequent impact on plant growth and yield performance.  相似文献   
65.
Abstract The influence of soil moisture content on leaf dynamics and insect herbivory was examined between September 1991 and March 1992 in a river red gum (Eucalyptus camaldulensis) forest in southern central New South Wales. Long-term observations of leaves were made in trees standing either within intermittently flooded waterways or at an average of 37. 5m from the edge of the waterways. The mean soil moisture content was significantly (P≤0.05) greater in the waterways than in the non-flooded areas. Trees in the higher soil moisture regime produced significantly larger basal area increments and increased canopy leaf area. This increase in canopy leaf area was achieved, in part, through a significant increase in leaf longevity and mean leaf size. Although a greater number of leaves was initiated and abscissed per shoot from the non-flooded trees, more leaves were collected from litter traps beneath the denser canopies of the flooded trees. Consumption of foliage by insects on the trees subjected to flooding compared to the non-flooded trees was not significantly different. However, the relative impact of insect herbivory was significantly greater on the non-flooded trees. Leaf chewing was the most common form of damage by insects, particularly Chryso-melidae and Curculionidae. No species was present in outbreak during this study. Leaf survival decreased as the per cent area eaten per leaf increased. In addition, irrespective of the level of herbivory, leaf abscission tended to be higher in E. camaldulensis under moisture deficit. The influence of soil moisture content on the balance between river red gum growth and insect herbivory is discussed.  相似文献   
66.
The nucleotide sequence and derived amino acid sequence were determined for a full-length version of the tomato cDNA clone, pTOM75, the mRNA for which has previously been shown to accumulate in roots, ripening fruit and senescing leaves. Computer analysis of the predicted protein product, which we have named tomato ripening-associated membrane protein (TRAMP) indicates strong homology to known transmembrane channel proteins from other organisms. Northern analysis showed that this gene was induced by waterstress and that this induction was unaffected in an ABA-deficient genetic back-ground.  相似文献   
67.
Paclobutrazol [(2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol], a triazole growth retardant, increased the 1-aminocyclopropane-1-carboxylic acid (ACC) level and resulted in reduced ethylene production, estimated as ethylene release in a closed system or by vacuum-extraction, in the primary leaves of Phaseolus vulgaris L. cv. Juliska seedlings exposed to light. At the light/dark transition, a definite enhancement of the endogenous ethylene level was observed by vacuum-extraction of primary leaves of treated plants and the ethylene deficiency of retardant-treated leaves ceased. The concentration of ACC after the light/dark transition followed the pattern for ethylene, and the increase in ACC content was paralleled by a decrease in malonyl-ACC.
It is concluded that the internal level of ethylene is not necessarily lower in the primary leaves of paclobutrazol-treated bean plants, but under special environmental conditions in vivo it may reach that of the control.  相似文献   
68.
A growth analysis was made of ultraviolet-B (UV-B)-sensitive (Poinsett) and insensitive (Ashley) cultivars of Cucuumis satives L. grown in growth chambers at 600 μmol m−2 s−1 of photosynthetic photon flux (PPF) provided by red- and far-red-deficient metal halide (MH) or blue- and UV-A-deficient high pressure sodium/deluxe f HPS/DX) lamps. Plants were irradiated 6 h daiiy with 0.2 f-UV-B) or 18.2 C+UV-B) kJ m−2 day−1 of biologically effective UV-B for 8 or 15 days from time of seeding. In general, plants given supplemental UV-B for 15 days showed lower leaf area ratio (LARs, and higher specific leaf mass (SLM) mean relative growth rate (MRGR) and net assimilation rate (NAR) than that of control plants, but they showed no difference in leaf mass ratio (LMR), Plants grown under HPS/DX lamps vs MH lamps showed higher SLM and NAR. lower LAR and LMR. hut no difference in MRGR. LMR was the only growth parameter affected by cultivar: at 15 days, it was slightly greater in Poinsett than in Ashley. There were no interactive effects of UV-B. PPF source or cultivar on any of the growth parameters determined, indicating that the choice of either HPS/DX or MH lamps should not affect growth response to UV-B radiation. This was true even though leaves of UV-B-irradiated plants grown under HPS/DX lamps have been shown to have greater chlorosis than those grown under MH lamps.  相似文献   
69.
70.
Uptake,accumulation and metabolism of auxins in tobacco leaf protoplasts   总被引:2,自引:0,他引:2  
Uptake and metabolism of exogenous naphthalene-1-acetic acid (NAA) and indole-3-acetic acid (IAA) have been studied in tobacco (Nicotiana tabacum L. cv. Xanthi) mesophyll protoplasts. Both auxins entered protoplasts by diffusion under the action of the transmembrane pH gradient without any detectable participation of an influx carrier. Molecules were accumulated by an anion-trapping mechanism and most of them were metabolized within hours, essentially as glucose-ester and amino-acid conjugates. Protoplasts were equipped with a functional auxin-efflux carrier as evidenced by the inhibitory effect of naphthylphtalamic acid on IAA efflux. Basically, similar mechanisms of NAA and IAA uptake occurred in protoplasts. However, the two auxins differed in their levels of accumulation, due to different membrane-transport characteristics, and the nature of the metabolites produced. This shows the need to estimate the accumulation and the metabolism of auxins when analyzing their effects in a given cell system. The internal auxin concentration could be modulated by changing the transmembrane pH gradient, giving an interesting perspective for discriminating between the effects of intra- and extracellular auxin on physiological processes.Abbreviations BA benzoic acid - Ci/Ce accumulation ratio of auxin - IAAasp N-[3-indolylacetyl]-dl-aspartic acid - NAA naphthalene-1-acetic acid - NAAasp N-[1-naphthylacetyl]-l-aspartic acid - NPA N-1-naphthylphthalamic acid The authors thank Dr. M. Caboche (I.N.R.A, Versailles, France) for his generous gifts of some amide derivatives of 1-NAA, Mr. P. Varennes and Dr. B. Das (I.C.S.N., C.N.R.S., Gif-sur-Yvette, France) for recording and interpreting the mass spectra of NAA glucose ester, and Prof. P. Manigault (Institut des Sciences Végétales, Gif-sur-Yvette) for microscopy measurements of protoplast dimensions. This work was supported by funds from the C.N.R.S, I.N.R.A, and E.E.C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号