首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   715篇
  免费   38篇
  国内免费   48篇
  2024年   3篇
  2023年   9篇
  2022年   14篇
  2021年   12篇
  2020年   26篇
  2019年   25篇
  2018年   27篇
  2017年   24篇
  2016年   36篇
  2015年   24篇
  2014年   23篇
  2013年   47篇
  2012年   24篇
  2011年   24篇
  2010年   18篇
  2009年   23篇
  2008年   25篇
  2007年   32篇
  2006年   26篇
  2005年   24篇
  2004年   29篇
  2003年   17篇
  2002年   23篇
  2001年   25篇
  2000年   19篇
  1999年   19篇
  1998年   15篇
  1997年   18篇
  1996年   11篇
  1995年   14篇
  1994年   18篇
  1993年   12篇
  1992年   16篇
  1991年   10篇
  1990年   7篇
  1989年   13篇
  1988年   7篇
  1987年   10篇
  1986年   12篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   10篇
  1981年   4篇
  1980年   2篇
  1979年   8篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有801条查询结果,搜索用时 15 毫秒
91.
This study investigates the exposure of lead‐induced reactive oxygen species (ROS) generation, DNA damage, and apoptosis and also evaluates the therapeutic intervention using antioxidants in human renal proximal tubular cells (HK‐2 cells). Following treatment of HK‐2 cells with an increasing concentration of lead nitrate (0–50 μM) for 24 h, the intracellular ROS level increased whereas the GSH level decreased significantly in a dose‐dependent manner. Comet assay results revealed that lead nitrate showed the ability to increase the levels of DNA strand breaks in HK‐2 cells. Lead exposure also induced apoptosis through caspase‐3 activation at 30 μg/mL. Pretreatment with N‐acetylcysteine (NAC) and tannic acid showed a significant ameliorating effect on lead‐induced ROS, DNA damage, and apoptosis. In conclusion, lead induces ROS, which may exacerbate the DNA damage and apoptosis via caspase‐3 activation. Additionally, supplementation of antioxidants such as NAC and tannic acid may be used as salvage therapy for lead‐induced DNA damage and apoptosis in an exposed person.  相似文献   
92.
A novel Pb-resistant bacterium was isolated from aged lead-contaminated alkaline soils, and was identified as Bacillus megaterium via the MIDI protocol. The biosorption isotherms and kinetics of Pb(II) associated with B. megaterium in vivo in the alkaline environment were investigated at the first time. All the batch experiments of biosorption demonstrate that the B. megaterium uptake of lead is pH-dependent, exothermic (ΔH° = ?5224.86 KJ mol?1), spontaneous, and fits well with the Langmuir isotherm, resulting in different kinetics under different examination temperatures. The maximum biosorption capacity is 503.86 mg g?1 at optimum conditions, which is much better in comparison to the biosorbent reported at the acidic condition in the literature. The Fourier-transform Infrared spectroscopic analysis of lead-loaded biomass confirms that the biosorption between B. megaterium and lead is the chemical adsorption in vivo. A site test indicates that B. megaterium really increases mobility and bioavailability of lead in Pb-contaminated alkaline soil in terms of chemical fractionation in vivo, which will potentially increase its uptake by hyperaccumulated plants in alkaline soils in arid or semi-arid areas of NW, China. Therefore, the novel isolate of B. megaterium with the highest adsorption capacity is a new promising biosorbent for the lead removal in alkaline water and soil.  相似文献   
93.
We prepared capsules containingSaccharomyces cerevisiae andZoogloea ramigera cells for the removal of lead (II) and cadmium ions. Microbial cells were encapsulated and cultured in the growth medium. TheS. cerevisiae cells grown in the capsule did not leak through the capsule membrane. The dried cell density reached to 250 g/l on the basis of the inner volume of the 2.0 mm diameter capsule after 36 hour cultivation. The dry whole cell exopolymer density of encapsulatedZ. ramigera reached to 200 g/L. The capsule was crosslinked with triethylene tetramine and glutaric dialdehyde solutions. The cadmium uptake of encapsulated whole cell exopolymer ofZ. ramigera was 55 mg Cd/g biosorbent. The adsorption line followed well Langmuir isotherm. The lead uptake of the encapsulatedS. cerevisiae was about 30 mg Pb/g biomass. The optimum pH of the lead uptake using encapsulatedS. cerevisiae was found to be 6. Freundlich model showed a little better fit to the adsorption data than Langmuir model. 95 percent of the lead adsorbed on the encapsulated biosorbents was desorbed by the 1 M HCl solution. The capsule was reused 50 batches without loosing the metal uptake capacity. And the mechanical strength of the crosslinked capsule was retained after 50 trials.  相似文献   
94.
Mosses have been used as biomonitors of atmospheric pollution for some years, but few studies have been carried out on the effect of NOx emissions from traffic on moss tissue N. Eight species of moss (102 samples) growing on walls or roofs next to roads exposed to different traffic densities were collected from urban and rural sites in the UK. The shoots were sampled for total N, their stable isotope 15N/14N content (δ15N) and heavy metal content (Pb, Zn). There was a lack of correlation between tissue total N and traffic exposure, but a very good correlation between traffic exposure and tissue δ15N. Plants collected near motorways or busy urban roads had δ15N values ranging between +6 and −1‰, while in rural areas with hardly any traffic these ranged from −2 to −12‰. In a separate survey of mosses, the average δ15N of shoots from busy roadsides in London was +3.66‰, whereas from samples collected from farm buildings near poultry or cattle pens it was −7.8‰. This indicates that the two main atmospheric N sources, NOx and NHx, have different δ15N signatures, the former tending to be positive and the latter negative. Tissue concentrations of both Pb and Zn show a strong positive correlation with traffic exposure, with Zn in particular being greater than Pb. The results are discussed with regard to the use of moss tissue Zn as a means for monitoring or mapping pollution from vehicles, and of δ15N as an aid to distinguish between urban (NOx) and rural (NHx) forms of N pollution.  相似文献   
95.
Accumulation of lead in the crustose lichen Acarospora smaragdula sensu lato is reported in the vicinity of an ore- processing plant where it is subjected to acidification and metal particulate fallout. A combination of light microscopy, X-ray element mapping, field emission scanning electron microscopy (FESEM) and other analytical techniques identifies Pb accumulation within specific fungal tissues derived from smelter particles (PM10s). No Pb was detected within the photobiont layer. Our studies suggest that Pb is highly mobile under the prevailing acidic conditions, and is fixed within the lichen cortex and melanized apothecia. Lead is also accumulated within the medulla and at the rock–lichen interface where it may precipitate as amorphous botryoidal encrustations on medullary hyphae and iron-rich particles. Modern FESEMs and microprobes enable analysis of minute quantities of material, and are important tools in understanding the fate of metals within lichens necessary to develop their use as predictive and sensitive bioindicators of aerial particulate contaminants. We suggest that crustose lichens, hitherto largely ignored in metal pollution studies, may be useful bioindicators of aerial particulate contaminants in polluted areas where macrolichens are absent.  相似文献   
96.
A pot experiment was conducted to study the relationship between speciation distribution of cadmium (Cd) and lead (Pb) and their availability to cole (Brassica campestris L.) grown on the Cd–Pb polluted soil in northwest of China. The results showed that Cd in the unpolluted soil was mainly bound to carbonate fraction (F2) and Fe–Mn oxide fraction (F3), and Pb was mainly bound to carbonate fraction (F2) and residual fraction (F5). However, marked change of Cd and Pb fractionation was observed with increasing soil Cd and Pb concentrations, where the concentrations of Cd in F1 (exchangeable fraction), F2 and F3 increased significantly (p < 0.001 for F1, F2 and F3), and Pb in F1, F2, F3 and F4 increased significantly (p < 0.001 for F1, F2, F3 and F4).The correlation analysis between the fraction distribution coefficient of Cd and Pb in the soil and Cd and Pb concentration accumulated in cole showed that both Cd and Pb in F1 fraction in the soil made the greatest contribution on the accumulation of Cd and Pb in cole. Higher bio-concentration factors (BCFs) and translocation factors (TFs) for Cd and lower BCFs and TFs for Pb were observed in the cole, respectively. Cd had higher accumulation in the edible parts of the cole, but Pb had lower accumulation in that. Therefore, Cd has higher risk to human health than Pb when people eat the coles grown in Cd–Pb polluted soil in northwestern China.  相似文献   
97.
Forty-five-days old plants of Indian senna (Cassia angustifolia Vahl.) were subjected to 0–500 μM lead acetate (Pb-Ac) in pot culture. Changes in contents of thiobarbituric acid reactive substances (TBARS), ascorbate, glutathione, proline, sennosides (a+b), and activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), and catalase (CAT) were studied at pre-flowering (60 d after sawing, DAS), flowering (90 DAS) and post-flowering (120 DAS) stages of plant development. Compared with the controls, the Pb-Ac treated plants showed an increase in contents of TBARS, dehydroascorbate, oxidized and total glutathione at all stages of growth. However, sennoside yield and contents of ascorbate and reduced form of glutathione declined. Proline content increased at 60 DAS but declined thereafter. Activities of SOD, APX, GR and CAT were markedly increased. Sennoside content was higher at 60 and 90 DAS but lower at 120 DAS, compared to the control.  相似文献   
98.
Deterioration of membranes caused by lipoxygenase (LOX) activity under 10 μM PbCl2 or 10 μM HgCl2 was partially alleviated by the exogenous application of 100 μM salicylic acid (SA). In two cultivars of rice (Oryza sativa L. cvs. Ratna and IR 36), the presence of SA ameliorated the increased leakage of electrolytes, injury index, and the content of malondialdehyde caused by these heavy metals. Lead decreased H2O2 content whereas Hg increased it in both cultivars. Application of SA increased H2O2 in presence of Pb, while decreased it in presence of Hg. Both Pb and Hg decreased superoxide dismutase activity, while increased peroxidase activity. The activity of catalase was decreased by Hg but increased by Pb and SA reversed their effects. Thus, SA ameliorated the damaging effects of Pb and Hg on membranes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
99.
This article investigates technological opportunities to close technospheric flows in a large-scale use of a toxic and scarce metal, lead. It analyzes the lead flows and losses to the environment in a modeled lead-acid battery system for Sweden. The modeled system is built on today's technology for production and recycling of lead and batteries while the recovery of used batteries is varied. The analysis shows that the losses from the production and recycling processes are so low that consumption losses and the recovery rate dominate the total system losses. In a steady state with very high recovery of used batteries, the system losses are small compared to natural lead flows and to the historical lead losses during the industrialization. The modeling assumes that all the secondary lead goes back into the production of new batteries even though in Swedish battery manufacturing today, primary lead dominates the lead supply for lead oxide production. The possibilities for increased secondary lead use in the production of lead oxide are also discussed  相似文献   
100.
The distribution of lead in and below a soil embankment used as a stop butt for lead bullets at a sport shooting range for more than 30 years was investigated. A vertical profile, just behind the shooting target, was mapped by 54 soil samples characterized by contents of lead bullets, soil lead, and easily leachable lead as measured in a leaching test (L/S 2). At the target, the soil contained up to 40% metallic lead and 5 to 10% lead associated with the soil particles (<2?mm). The leaching test showed concentrations of dissolved lead in the range 5 to 20?mg/l. However, in the bottom of the stop butt (about 1?m lower than the target) soil lead was only slightly elevated, and no increase in lead was found below the stop butt in the original soil profile. In the lower part of the stop butt, pH was around 5, which is considered to favor lead migration, but in the soil samples with lead bullets present pH was between 6 and 7. The elevated pH values, probably caused by the corrosion of lead bullets, may have been a significant factor in limiting the migration of lead in the stop butt. The investigation showed that the lead in the stop butt did not affect the surroundings, but that the high lead content of the soil would require that this be treated as waste if the facility was abandoned.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号