首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   924篇
  免费   92篇
  国内免费   97篇
  2023年   15篇
  2022年   10篇
  2021年   26篇
  2020年   23篇
  2019年   28篇
  2018年   38篇
  2017年   22篇
  2016年   39篇
  2015年   42篇
  2014年   41篇
  2013年   54篇
  2012年   44篇
  2011年   32篇
  2010年   39篇
  2009年   52篇
  2008年   58篇
  2007年   52篇
  2006年   44篇
  2005年   46篇
  2004年   47篇
  2003年   41篇
  2002年   25篇
  2001年   36篇
  2000年   31篇
  1999年   15篇
  1998年   18篇
  1997年   14篇
  1996年   16篇
  1995年   7篇
  1994年   22篇
  1993年   7篇
  1992年   16篇
  1991年   11篇
  1990年   16篇
  1989年   4篇
  1988年   12篇
  1987年   11篇
  1986年   8篇
  1985年   9篇
  1984年   6篇
  1983年   5篇
  1982年   2篇
  1981年   8篇
  1980年   6篇
  1979年   3篇
  1978年   2篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1970年   3篇
排序方式: 共有1113条查询结果,搜索用时 31 毫秒
151.
p‐Coumaroyl ester 3‐hydroxylase (C3′H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3′H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3H deficiency on the structure and properties of grass cell walls. C3H‐knockdown lines generated via RNA interference (RNAi)‐mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3H‐knockout rice mutants generated via CRISPR/Cas9‐mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3H‐knockdown RNAi lines revealed that their lignins were largely enriched in p‐hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non‐acylated lignin units, with grass‐specific γ‐p‐coumaroylated lignin units remaining apparently unchanged. Suppression of C3H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross‐linking ferulates. Collectively, our data demonstrate that C3H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross‐linking. We also demonstrated that C3H‐suppressed rice displays enhanced biomass saccharification.  相似文献   
152.
Temperature is one of the main factors that determine sexual reproduction in terrestrial and emergent aquatic plant species. The effect of temperature on sexual reproduction and seed production of Glyceria maxima (Hartm.) Holmb. in the southern hemisphere is unknown. Glyceria maxima collections in February 2010 at three isolated infestations in KwaZulu-Natal failed to yield a single seed, only empty panicles. Laboratory experiments showed that vernalisation had no consistent effect on seed production. Field- and laboratory-grown plants produced seeds in the 2010/2011 season, because of having sufficient time at optimum temperatures required for seed production (1 491 and 1 585 hours, respectively), compared to a shorter period (1 352 hours) of suitable temperatures during the 2009/2010 growing season. An inadequate period of optimum temperatures (15–25°C) during seed production resulted in the lack of seeds in the field in the 2009/2010 growing season. This study showed that temperature and duration of exposure thereto during the seed-production period play vital roles in G. maxima sexual reproduction.  相似文献   
153.

Questions

Understanding how livestock grazing alters plant composition in low productivity environments is critical to managing livestock sustainably alongside native and introduced wild herbivore populations. We asked four questions: (1) does recent livestock and rabbit grazing reduce some plant attributes more strongly than others; (2) does grazing by introduced herbivores (i.e. livestock and rabbits) affect plants more strongly than native herbivores (i.e. kangaroos); (3) do the effects of recent livestock grazing differ from the legacy effects of livestock grazing; and (4) does the probability of occurrence of exotic plants increase with increasing net primary productivity (NPP)?

Location

South‐eastern Australia.

Methods

We measured the recent grazing activity of co‐occurring livestock (cattle, sheep, goats), rabbits and kangaroos by counting faecal pellets; historic grazing activity by measuring livestock tracks; and derived NPP from satellite imagery. We used a hierarchical GLMM to simultaneously model the presence or absence (i.e. probability of occurrence) of all plant species as a function of their attributes (growth form, lifespan and origin) to assess their average response to recent grazing, historic grazing and productivity in a broad‐scale regional study.

Results

Recent and historic livestock grazing, rabbit grazing and increasing NPP reduced the average probability of occurrence of plant species, although responses varied among plant attributes. Both recent and historic livestock grazing strongly reduced the average probability of occurrence of native species, and forbs and geophytes, but differed in their relative effects on other growth forms. Recent livestock grazing, rabbit grazing and NPP had similar effects, strongly reducing native species and forbs, geophytes, shrubs and sub‐shrubs. The overall effects of recent kangaroo grazing were relatively weak, with no clear trends for any given plant attribute.

Conclusion

Our results highlight the complex nature of grazing by introduced herbivores compared with native herbivores on different plant attributes. Land managers need to be aware that domestic European livestock, rabbits and other free‐ranging introduced livestock such as goats have detrimental impacts on native plant communities. Our results also show that kangaroo grazing has a relatively benign effect on plant occurrence.  相似文献   
154.
155.
The sustainable management of unwanted vegetation in agricultural fields through integrated weed control strategies requires detailed knowledge about the maternal formation of primary seed dormancy, to support the prediction of seedling emergence dynamics. This knowledge is decisive for the timing of crop sowing and nonchemical weed control measures. Studies in controlled environments have already demonstrated that thermal conditions and, to some extent, water availability during seed set and maturation has an impact on the level of dormancy. However, it is still unclear if this applies also under field conditions, where environmental stressors and their timing are more variable. We address this question for Alopecurus myosuroides in south‐western Sweden. We quantified the effects of cumulated temperature and precipitation as well as soil water potential during the reproductive growth phase of A myosuroides on primary seed dormancy under field conditions. Empirical models differing in focal time intervals and, in case of soil water potential, focal soil depths were compared regarding their predictive power. The highest predictive power for the level of primary dormancy of A. myosuroides seeds was found for a two‐factorial linear model containing air temperature sum between 0 and 7 days before peak seed shedding as well as the number of days with soil water potential below field capacity between 7 and 35 days before peak seed shedding. For soil water potential, it was found that only the top 10 cm soil layer is of relevance, which is in line with the shallow root architecture of A. myosuroides. We conclude that for this species the level of dormancy depends on the magnitude and timing of temperature and water availability during the reproductive growth phase. Water availability appears to be more important during maternal environmental perception and temperature during zygotic environmental perception.  相似文献   
156.
Background: The occurrence of shrub patches, alternating with either bare soil or low herbaceous cover, is a common feature in arid and semi-arid shrublands throughout the world. This patchy pattern of vegetation may result from water limitation, modulated by plant interactions; grazing (offtake and tramping) by livestock may cause further patchiness vegetation structure.

Aims: We hypothesised that vegetation patchiness in the semi-arid shrublands of north-eastern Patagonia would be increased by livestock grazing, but not by positive interactions between adult plants of shrubs and grasses.

Methods: We compared vegetation cover and pattern at three grazing intensities (exclosure, light and heavy grazing) and measured the growth of a representative shrub and grass in the presence and absence of the other to quantify the role of plant-to-plant interactions and its interaction with grazing for vegetation structure.

Results: In the grazing exclosure and in moderately grazed areas, vegetation cover among shrub patches was larger, whereas the top cover of shrubs was lower than in the heavily grazed areas. We did not find any evidence of positive interactions between shrub and grass life forms.

Conclusions: Our results were consistent with the hypothesis that livestock grazing increased the formation of patchy vegetation cover in arid and semi-arid shrublands.  相似文献   

157.
Bush encroachment is reported from savannah regions worldwide. Different management strategies are used to rehabilitate these areas. In this context, the mutual interaction between vegetation and large herbivore's distribution is evident. We studied effects of land management on vegetation structure in regard to encroaching species and the subsequent habitat use of two grazing (oryx, Oryx gazella L.; common warthog, Phacochoerus africanusGmelin ) and one browsing (greater kudu, Tragelaphus strepsicerosPallas ) herbivore species. We assumed that (i) cleared areas will be favoured by grazers and (ii) noncleared areas will be favoured by browsers. Specifically, we asked: Which factors determine the habitat use of these different feeding guilds? Consistently with our expectations, we found that warthog favoured sites with high grass cover. For oryx, surprisingly shrubs with a height of 80–150 cm influenced their distribution positively, whereas for kudu, only the interaction of site and grass cover was significant in our models. However, this was related to the occurrence of shrubs of 80–150 cm height. We conclude that the management of encroachers, resulting in differences in vegetation, did not influence herbivore distribution as expected. Other factors like human impact and vegetation cover among others are discussed as additional drivers of habitat use.  相似文献   
158.
Public informatics resources for rice and other grasses   总被引:1,自引:0,他引:1  
As an emerging model system, rice will benefit from an informatics infrastructure which organizes genome data and makes it available worldwide. RiceGenes and other Internet-accessible resources are evolving to meet these goals. Grass crops such as rice, maize, millet, sorghum and wheat are closely related but are represented by independent database projects; interlinking these resources would create a broad view of grass genetics and make it easier to compare data across genomes. The future success of grass informatics depends on the development of new comparative mapping displays as well as the participation of the research community in assembling and curating comparative map data.  相似文献   
159.
160.
Little information exists about the establishment of native longleaf pine flatwoods species for use in restoration efforts and as buffers around natural areas in the southeastern United States. Composition of groundcover in these systems is dominated by perennial graminoid species. Vegetation in current buffers is generally non‐native turfgrass that can escape into natural areas, often reducing establishment and survival of native species. Where management objectives involve actively restoring native groundcover or reducing the probability of invasion by these non‐native turfgrasses, identification of native species and restoration methods is needed. We investigated seed germination and establishment of four species native to longleaf pine flatwoods in central Florida and one species native to the adjacent wetland communities. Paspalum setaceum, Panicum anceps, Eustachys petraea, and Eragrostis refracta were directly seeded, and P. distichum was planted as sprigs into three former P. notatum pastures. Irrigation, fertilization, weed control, and mowing treatments were assessed in terms of cover development of the sown species. Paspalum distichum developed the highest percent cover—over 80% in wet areas after 1 year. Mowing had mixed impacts depending on the species, and fertilization never significantly increased cover. Directly seeded species developed sparse cover (0–40%), probably as a result of drought conditions. However, E. petraea and E. refracta appeared more promising for use on rights‐of‐way when using high sowing rates. A second experiment conducted on a roadside included these two species and sprigged P. distichum. Both E. petraea and P. distichum developed more than 45% cover on the roadside. Establishment of these natives from seed or sprigs was significantly enhanced when site preparation effectively reduced the seedbank of other species present in the soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号