首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1559篇
  免费   106篇
  国内免费   30篇
  2024年   1篇
  2023年   34篇
  2022年   56篇
  2021年   59篇
  2020年   55篇
  2019年   60篇
  2018年   72篇
  2017年   31篇
  2016年   50篇
  2015年   55篇
  2014年   85篇
  2013年   107篇
  2012年   61篇
  2011年   61篇
  2010年   55篇
  2009年   67篇
  2008年   64篇
  2007年   62篇
  2006年   75篇
  2005年   61篇
  2004年   67篇
  2003年   70篇
  2002年   51篇
  2001年   35篇
  2000年   23篇
  1999年   19篇
  1998年   34篇
  1997年   27篇
  1996年   33篇
  1995年   10篇
  1994年   15篇
  1993年   11篇
  1992年   16篇
  1991年   7篇
  1990年   12篇
  1989年   13篇
  1988年   7篇
  1987年   10篇
  1986年   8篇
  1985年   9篇
  1984年   12篇
  1983年   8篇
  1982年   11篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1977年   3篇
  1976年   2篇
  1970年   1篇
排序方式: 共有1695条查询结果,搜索用时 15 毫秒
961.
962.
As for the majority of neurodegenerative diseases, pathological mechanisms of amyotrophic lateral sclerosis (ALS) have been challenging to study due to the difficult access to alive patients' cells. Induced pluripotent stem cells (iPSCs) offer a useful in vitro system for modelling human diseases. iPSCs can be theoretically obtained by reprogramming any somatic tissue although fibroblasts (FB) remain the most used cells. However, reprogramming peripheral blood cells (PB) may offer significant advantages. In order to investigate whether the choice of starting cells may affect reprogramming and motor neuron (MNs) differentiation potential, we used both FB and PB from a same C9ORF72-mutated ALS patient to obtain iPSCs and compared several hallmarks of the pathology. We found that both iPSCs and MNs derived from the two tissues showed identical properties and features and can therefore be used interchangeably, giving the opportunity to easily obtain iPSCs from a more manageable source of cells, such as PB.  相似文献   
963.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Mutations in the gene encoding copper/zinc superoxide dismutase-1 (SOD1) are responsible for most familiar cases, but the role of mutant SOD1 protein dysfunction in non-cell autonomous neurodegeneration, especially in relation to microglial activation, is still unclear. Here, we focused our study on microglial cells, which release SOD1 also through exosomes. We observed that in rat primary microglia the overexpression of the most-common SOD1 mutations linked to fALS (G93A and A4V) leads to SOD1 intracellular accumulation, which correlates to autophagy dysfunction and microglial activation. In primary contact co-cultures, fALS mutant SOD1 overexpression by microglial cells appears to be neurotoxic by itself. Treatment with the autophagy-inducer trehalose reduced mutant SOD1 accumulation in microglial cells, decreased microglial activation and abrogated neurotoxicity in the co-culture model. These data suggest that i) the alteration of the autophagic pathway due to mutant SOD1 overexpression is involved in microglial activation and neurotoxicity; ii) the induction of autophagy with trehalose reduces microglial SOD1 accumulation through proteasome degradation and activation, leading to neuroprotection. Our results provide a novel contribution towards better understanding key cellular mechanisms in non-cell autonomous ALS neurodegeneration.  相似文献   
964.
《Current biology : CB》2020,30(20):4063-4070.e2
  1. Download : Download high-res image (138KB)
  2. Download : Download full-size image
  相似文献   
965.
In Gram-negative bacteria, the O-antigen-encoding genes may be transferred between lineages, although mechanisms are not fully understood. To assess possible lateral gene transfer (LGT), 21 Argentinean Vibrio cholerae O-group 1 (O1) isolates were examined using multilocus sequence typing (MLST) to determine the genetic relatedness of housekeeping genes and genes from the O1 gene cluster. MSLT analysis revealed that 4.4% of the nucleotides in the seven housekeeping loci were variable, with six distinct genetic lineages identified among O1 isolates. In contrast, MLST analysis of the eight loci from the O1 serogroup region revealed that 0.24% of the 4943 nucleotides were variable. A putative breakpoint was identified in the JUMPstart sequence. Nine conserved nucleotides differed by a single nucleotide from a DNA uptake signal sequence (USS) also found in Pastuerellaceae . Our data indicate that genes in the O1 biogenesis region are closely related even in distinct genetic lineages, indicative of LGT, with a putative DNA USS identified at the defined boundary for the DNA exchange.  相似文献   
966.
967.
The interaction between the Brazilian pioneer legume Sesbania virgata and its microsymbiont Azorhizobium doebereinerae leads to the formation of nitrogen‐fixing nodules on roots that grow either in well‐aerated soils or in wetlands. We studied the initiation and development of nodules under these alternative conditions. To this end, light and fluorescence microscopy were used to follow the bacterial colonisation and invasion into the host and, by means of transmission electron microscopy, we could observe the intracellular entry. Under hydroponic conditions, intercellular invasion took place at lateral root bases and mature nodules were round and determinate. However, on roots grown in vermiculite that allows aerated growth, bacteria also entered via root hair invasion and nodules were both of the determinate and indeterminate type. Such versatility in entry and developmental plasticity, as previously described in Sesbania rostrata, enables efficient nodulation in both dry and wet environments and are an important adaptive feature of this group of semi‐tropical plants that grow in temporarily flooded habitats.  相似文献   
968.
ABSTRACT. S‐adenosylmethionine is one of the most important metabolites in living cells and is synthesized in a single reaction catalyzed by methionine adenosyltransferase (MAT). At the sequence and structural level, this enzyme is one of the most conserved proteins known. Here we show that some representatives of three distantly related eukaryotic lineages—dinoflagellates, haptophytes, and euglenids—possess a highly divergent type of MAT, which we call MATX. Even though MATX contains all the sites known to be involved in catalysis and the association of monomers, it also has four insertions throughout the protein that are not observed in other MAT homologs. The phylogenetic distribution and affinities of MATX suggest that it originated in a single eukaryotic lineage and was spread via multiple events of eukaryote‐to‐eukaryote lateral gene transfer. We suggest a tentative model in which the origin of MATX is connected with the progression of secondary endosymbiosis.  相似文献   
969.
The frequency of use of diagonal walking by three motorically immature vervet monkeys (Cercopithecus aethiops) is discussed. The subjects were housed at The Balcones Research Center (Austin, Texas) and ranged from 15–105 days of age. Mixed longitudinal data taken from film indicated that lateral walknig was the first gait employed by the infant vervets studied, but that diagonal walking completely replaced lateral walking by 81 days of age. These data were compared with those of captive infant Macaca mulatta, and feral infant Papio anubis. General agreement was found regarding onset and frequency of use of diagonal walking in the three genera.  相似文献   
970.
Motor neuron disease (MND) is a rare group of disorders characterized by degeneration of motor neurons (MNs). The most common form of MND, amyotrophic lateral sclerosis (ALS), is an incurable disease with a variable rate of progression. The search of robust biomarkers able to discriminate among different ALS forms is paramount to properly stratify patients, and to identify those who could most likely benefit from experimental therapies. Phosphorylated-neurofilament heavy chain (p-NfH) and neurofilament light chain (NfL) are neuron-specific components of the cytoskeleton and may represent reliable markers of neuronal injury in neurological disorders. In this study, we described our cohort of ALS patients in order to investigate whether and how cerebrospinal fluid (CSF) p-NfH and NfL levels may reflect progression rate, MN involvement and the extent of neurodegeneration. CSF p-NfH and NfL were significantly increased in ALS compared with healthy and disease controls, including patients with other forms of MND, and were higher in patients with more aggressive disease course, reflecting progression rate. We also evaluated neurofilament diagnostic accuracy in our centre, identifying with high sensitivity and 100% specificity cut-off values of 0.652 ng/mL for CSF p-NfH (P < .0001) and of 1261 pg/mL for NfL (P < .0001) in discriminating ALS from healthy controls. CSF neurofilaments were significantly correlated with ALS progression rate. Overall, CSF neurofilaments appear to reflect the burden of neurodegeneration in MND and represent reliable diagnostic and prognostic biomarkers in ALS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号