首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1559篇
  免费   106篇
  国内免费   30篇
  2024年   1篇
  2023年   34篇
  2022年   56篇
  2021年   59篇
  2020年   55篇
  2019年   60篇
  2018年   72篇
  2017年   31篇
  2016年   50篇
  2015年   55篇
  2014年   85篇
  2013年   107篇
  2012年   61篇
  2011年   61篇
  2010年   55篇
  2009年   67篇
  2008年   64篇
  2007年   62篇
  2006年   75篇
  2005年   61篇
  2004年   67篇
  2003年   70篇
  2002年   51篇
  2001年   35篇
  2000年   23篇
  1999年   19篇
  1998年   34篇
  1997年   27篇
  1996年   33篇
  1995年   10篇
  1994年   15篇
  1993年   11篇
  1992年   16篇
  1991年   7篇
  1990年   12篇
  1989年   13篇
  1988年   7篇
  1987年   10篇
  1986年   8篇
  1985年   9篇
  1984年   12篇
  1983年   8篇
  1982年   11篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1977年   3篇
  1976年   2篇
  1970年   1篇
排序方式: 共有1695条查询结果,搜索用时 31 毫秒
111.
Collective cell migration is critical for normal development, tissue repair and cancer metastasis. Migration of the posterior lateral line primordium (pLLP) generates the zebrafish sensory organs (neuromasts, NMs). This migration is promoted by the leader cells at the leading edge of the pLLP, which express the G protein-coupled chemokine receptor Cxcr4b and respond to the chemokine Cxcl12a. However, the mechanism by which Cxc112a/Cxcr4b signaling regulates pLLP migration remains unclear. Here we report that signal transduction by the heterotrimeric G protein subunit Gβ1 is essential for proper pLLP migration. Although both Gβ1 and Gβ4 are expressed in the pLLP and NMs, depletion of Gβ1 but not Gβ4 resulted in an arrest of pLLP migration. In embryos deficient for Gβ1, the pLLP cells migrated in an uncoordinated fashion and were unable to extend protrusions at the leading front, phenocopying those in embryos deficient for Cxcl12a or Cxcr4b. A transplantation assay showed that, like Cxcr4b, Gβ1 is required only in the leader cells of the pLLP. Analysis of F-actin dynamics in the pLLP revealed that whereas wild-type leader cells display extensive actin polymerization in the direction of pLLP migration, counterparts defective for Gβ1, Cxcr4b or Cxcl12a do not. Finally, synergy experiments revealed that Gβ1 and Cxcr4b interact genetically in regulating pLLP migration. Collectively, our data indicate that Gβ1 controls migration of the pLLP, likely by acting downstream of the Cxcl12a/Cxcr4b signaling. This study also provides compelling evidence for functional specificity among Gβ isoforms in vivo.  相似文献   
112.
ABSTRACT. Horizontal gene transfer (HGT) and common descent interact in space and time. Because events of HGT co‐occur with phylogenetic evolution, it is difficult to depict evolutionary patterns graphically. Tree‐like representations of life's diversification are useful, but they ignore the significance of HGT in evolutionary history, particularly of unicellular organisms, ancestors of multicellular life. Here we integrate the reticulated‐tree model, ring of life, symbiogenesis whole‐organism model, and eliminative pattern pluralism to represent evolution. Using Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a bifunctional enzyme in the glycolytic pathway of amoeba, we illustrate how EhADH2 could be the product of both horizontally acquired features from ancestral prokaryotes (i.e. aldehyde dehydrogenase [ALDH] and alcohol dehydrogenase [ADH]), and subsequent functional integration of these enzymes into EhADH2, which is now inherited by amoeba via common descent. Natural selection has driven the evolution of EhADH2 active sites, which require specific amino acids (cysteine 252 in the ALDH domain; histidine 754 in the ADH domain), iron‐ and NAD+ as cofactors, and the substrates acetyl‐CoA for ALDH and acetaldehyde for ADH. Alternative views invoking “common design” (i.e. the non‐naturalistic emergence of major taxa independent from ancestry) to explain the interaction between horizontal and vertical evolution are unfounded.  相似文献   
113.
In this study we investigated the role of ethylene in the formation of lateral and adventitious roots in tomato ( Solanum lycopersicum ) using mutants isolated for altered ethylene signaling and fruit ripening. Mutations that block ethylene responses and delay ripening – Nr ( Never ripe ), gr ( green ripe ), nor ( non ripening ), and rin ( ripening inhibitor ) – have enhanced lateral root formation. In contrast, the epi ( epinastic ) mutant, which has elevated ethylene and constitutive ethylene signaling in some tissues, or treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC), reduces lateral root formation. Treatment with ACC inhibits the initiation and elongation of lateral roots, except in the Nr genotype. Root basipetal and acropetal indole-3-acetic acid (IAA) transport increase with ACC treatments or in the epi mutant, while in the Nr mutant there is less auxin transport than in the wild type and transport is insensitive to ACC. In contrast, the process of adventitious root formation shows the opposite response to ethylene, with ACC treatment and the epi mutation increasing adventitious root formation and the Nr mutation reducing the number of adventitious roots. In hypocotyls, ACC treatment negatively regulated IAA transport while the Nr mutant showed increased IAA transport in hypocotyls. Ethylene significantly reduces free IAA content in roots, but only subtly changes free IAA content in tomato hypocotyls. These results indicate a negative role for ethylene in lateral root formation and a positive role in adventitious root formation with modulation of auxin transport as a central point of ethylene–auxin crosstalk.  相似文献   
114.
115.
Analysis of the retinal defects of a CK2 phosphomimetic variant of E(spl)M8 (M8S159D) and the truncated protein M8* encoded by the E(spl)D allele, suggest that the nonphosphorylated CtD “autoinhibits” repression. We have investigated this model by testing for inhibition (in “trans”) by the CtD fragment in its nonphosphorylated (M8‐CtD) and phosphomimetic (M8SD‐CtD) states. In N+ flies, ectopic M8‐CtD compromises lateral inhibition, i.e., elicits supernumerary bristles as with loss of N signaling. This antimorphic activity of M8‐CtD strongly rescues the reduced eye and/or bristle loss phenotypes that are elicited by ectopic M8SD or wild type M8. Additionally, the severely reduced eye of Nspl/Y; E(spl)D/+ flies is also rescued by M8‐CtD. Rescue is specific to the time and place, the morphogenetic furrow, where “founding” R8 photoreceptors are specified. In contrast, the phosphomimetic M8SD‐CtD that is predicted to be deficient for autoinhibition, exhibits significantly attenuated or negligible activity. These studies provide evidence that autoinhibition by the CtD regulates M8 activity in a phosphorylation‐dependent manner. genesis 48:44–55, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
116.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss, paralysis and death within 2-5 years of diagnosis. Currently, no effective pharmacological agents exist for the treatment of this devastating disease. Neuroinflammation may accelerate the progression of ALS. Cannabinoids produce anti-inflammatory actions via cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), and delay the progression of neuroinflammatory diseases. Additionally, CB2 receptors, which normally exist primarily in the periphery, are dramatically up-regulated in inflamed neural tissues associated with CNS disorders. In G93A-SOD1 mutant mice, the most well-characterized animal model of ALS, endogenous cannabinoids are elevated in spinal cords of symptomatic mice. Furthermore, treatment with non-selective cannabinoid partial agonists prior to, or upon, symptom appearance minimally delays disease onset and prolongs survival through undefined mechanisms. We demonstrate that mRNA, receptor binding and function of CB2, but not CB1, receptors are dramatically and selectively up-regulated in spinal cords of G93A-SOD1 mice in a temporal pattern paralleling disease progression. More importantly, daily injections of the selective CB2 agonist AM-1241, initiated at symptom onset, increase the survival interval after disease onset by 56%. Therefore, CB2 agonists may slow motor neuron degeneration and preserve motor function, and represent a novel therapeutic modality for treatment of ALS.  相似文献   
117.
118.
Over 130 mutations to copper, zinc superoxide dismutase (SOD) are implicated in the selective death of motor neurons found in 25% of patients with familial amyotrophic lateral sclerosis (ALS). Despite their widespread distribution, ALS mutations appear positioned to cause structural and misfolding defects. Such defects decrease SOD's affinity for zinc, and loss of zinc from SOD is sufficient to induce apoptosis in motor neurons in vitro. To examine the importance of the zinc site in the structure and pathogenesis of human SOD, we determined the 2.0-A-resolution crystal structure of a designed zinc-deficient human SOD, in which two zinc-binding ligands have been mutated to hydrogen-bonding serine residues. This structure revealed a 9 degrees twist of the subunits, which opens the SOD dimer interface and represents the largest intersubunit rotational shift observed for a human SOD variant. Furthermore, the electrostatic loop and zinc-binding subloop were partly disordered, the catalytically important Arg143 was rotated away from the active site, and the normally rigid intramolecular Cys57-Cys146 disulfide bridge assumed two conformations. Together, these changes allow small molecules greater access to the catalytic copper, consistent with the observed increased redox activity of zinc-deficient SOD. Moreover, the dimer interface is weakened and the Cys57-Cys146 disulfide is more labile, as demonstrated by the increased aggregation of zinc-deficient SOD in the presence of a thiol reductant. However, equimolar Cu,Zn SOD rapidly forms heterodimers with zinc-deficient SOD (t1/2 approximately 15 min) and prevents aggregation. The stabilization of zinc-deficient SOD as a heterodimer with Cu,Zn SOD may contribute to the dominant inheritance of ALS mutations. These results have general implications for the importance of framework stability on normal metalloenzyme function and specific implications for the role of zinc ion in the fatal neuropathology associated with SOD mutations.  相似文献   
119.
蛋白质组学是后基因组时代兴起的新型学科,是从整体水平对蛋白质的综合分析。阿尔茨海默病、帕金森病、肌萎缩侧索硬化症等是最常见的神经退行性疾病。应用蛋白质组学对它们进行研究,不仅可从蛋白质水平上揭示疾病的本质,还有助于全面探讨其病理机制,建立诊断标准,发现药物治疗靶点。  相似文献   
120.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, whose primary mechanisms or causes are still not defined and for which no effective treatment is available. We have recently reported that before disease onset the level of tyrosine nitrated proteins is increased in the G93A SOD1 transgenic mouse model of ALS. In the present investigation, we carried out a proteomic analysis of spinal cord extracts from G93A SOD1 mice at the presymptomatic stage of the disease to further unravel primary events in the pathogenesis and tentatively screen for potential pharmacological targets. Using a robust two-dimensional gel electrophoresis-based proteomic approach, we detected a number of proteins differentially represented in presymptomatic mice in comparison with controls. Alterations of these proteins correlate with mitochondrial dysfunction, aggregation, and stress response. Moreover, we found a variation in the isoform pattern of cyclophilin A, a molecular chaperone that protects cells from the oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号