首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13220篇
  免费   771篇
  国内免费   300篇
  14291篇
  2023年   149篇
  2022年   203篇
  2021年   310篇
  2020年   291篇
  2019年   370篇
  2018年   382篇
  2017年   238篇
  2016年   292篇
  2015年   304篇
  2014年   593篇
  2013年   763篇
  2012年   350篇
  2011年   524篇
  2010年   507篇
  2009年   634篇
  2008年   745篇
  2007年   682篇
  2006年   623篇
  2005年   544篇
  2004年   457篇
  2003年   433篇
  2002年   354篇
  2001年   239篇
  2000年   227篇
  1999年   227篇
  1998年   244篇
  1997年   196篇
  1996年   173篇
  1995年   170篇
  1994年   183篇
  1993年   156篇
  1992年   176篇
  1991年   118篇
  1990年   106篇
  1989年   110篇
  1988年   88篇
  1987年   95篇
  1986年   92篇
  1985年   118篇
  1984年   130篇
  1982年   119篇
  1981年   100篇
  1980年   117篇
  1979年   134篇
  1978年   152篇
  1977年   141篇
  1976年   193篇
  1974年   104篇
  1973年   256篇
  1972年   135篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The osmoregulated betaine transporter BetP is a stable trimer. Structural studies have shown that individual protomers can adopt distinct transport conformations, implying a functional role for the trimeric state in transport, although the role of trimerization in regulation is not yet understood. We designed putative monomeric mutants by molecular-dynamics simulations and in silico alanine-scanning mutagenesis. Several mutants including BetP-W101A/T351A were monomeric in detergent as well as in the membrane, as shown by blue native gel electrophoresis, crosslinking and electron microscopy. This monomeric form retains the ability to accumulate betaine, but is no longer regulated by hyperosmotic shock.  相似文献   
992.
993.
Neurons communicate with other cells via axons and dendrites, slender membrane extensions that contain pre- or post-synaptic specializations. If a neuron is damaged by injury or disease, it may regenerate. Cell-intrinsic and extrinsic factors influence the ability of a neuron to regenerate and restore function. Recently, the nematode C. elegans has emerged as an excellent model organism to identify genes and signaling pathways that influence the regeneration of neurons1-6. The main way to initiate neuronal regeneration in C. elegans is laser-mediated cutting, or axotomy. During axotomy, a fluorescently-labeled neuronal process is severed using high-energy pulses. Initially, neuronal regeneration in C. elegans was examined using an amplified femtosecond laser5. However, subsequent regeneration studies have shown that a conventional pulsed laser can be used to accurately sever neurons in vivo and elicit a similar regenerative response1,3,7.We present a protocol for performing in vivo laser axotomy in the worm using a MicroPoint pulsed laser, a turnkey system that is readily available and that has been widely used for targeted cell ablation. We describe aligning the laser, mounting the worms, cutting specific neurons, and assessing subsequent regeneration. The system provides the ability to cut large numbers of neurons in multiple worms during one experiment. Thus, laser axotomy as described herein is an efficient system for initiating and analyzing the process of regeneration.  相似文献   
994.
Traditionally, cell migration has been studied on two-dimensional, stiff plastic surfaces. However, during important biological processes such as wound healing, tissue regeneration, and cancer metastasis, cells must navigate through complex, three-dimensional extracellular tissue. To better understand the mechanisms behind these biological processes, it is important to examine the roles of the proteins responsible for driving cell migration. Here, we outline a protocol to study the mechanisms of cell migration using the epithelial cell line (MDCK), and a three-dimensional, fibrous, self-polymerizing matrix as a model system. This optically clear extracellular matrix is easily amenable to live-cell imaging studies and better mimics the physiological, soft tissue environment. This report demonstrates a technique for directly visualizing protein localization and dynamics, and deformation of the surrounding three-dimensional matrix. Examination of protein localization and dynamics during cellular processes provides key insight into protein functions. Genetically encoded fluorescent tags provide a unique method for observing protein localization and dynamics. Using this technique, we can analyze the subcellular accumulation of key, force-generating cytoskeletal components in real-time as the cell maneuvers through the matrix. In addition, using multiple fluorescent tags with different wavelengths, we can examine the localization of multiple proteins simultaneously, thus allowing us to test, for example, whether different proteins have similar or divergent roles. Furthermore, the dynamics of fluorescently tagged proteins can be quantified using Fluorescent Recovery After Photobleaching (FRAP) analysis. This measurement assays the protein mobility and how stably bound the proteins are to the cytoskeletal network.By combining live-cell imaging with the treatment of protein function inhibitors, we can examine in real-time the changes in the distribution of proteins and morphology of migrating cells. Furthermore, we also combine live-cell imaging with the use of fluorescent tracer particles embedded within the matrix to visualize the matrix deformation during cell migration. Thus, we can visualize how a migrating cell distributes force-generating proteins, and where the traction forces are exerted to the surrounding matrix. Through these techniques, we can gain valuable insight into the roles of specific proteins and their contributions to the mechanisms of cell migration.  相似文献   
995.
The coupling of cryo-light microscopy (cryo-LM) and cryo-electron microscopy (cryo-EM) poses a number of advantages for understanding cellular dynamics and ultrastructure. First, cells can be imaged in a near native environment for both techniques. Second, due to the vitrification process, samples are preserved by rapid physical immobilization rather than slow chemical fixation. Third, imaging the same sample with both cryo-LM and cryo-EM provides correlation of data from a single cell, rather than a comparison of "representative samples". While these benefits are well known from prior studies, the widespread use of correlative cryo-LM and cryo-EM remains limited due to the expense and complexity of buying or building a suitable cryogenic light microscopy stage. Here we demonstrate the assembly, and use of an inexpensive cryogenic stage that can be fabricated in any lab for less than $40 with parts found at local hardware and grocery stores. This cryo-LM stage is designed for use with reflected light microscopes that are fitted with long working distance air objectives. For correlative cryo-LM and cryo-EM studies, we adapt the use of carbon coated standard 3-mm cryo-EM grids as specimen supports. After adsorbing the sample to the grid, previously established protocols for vitrifying the sample and transferring/handling the grid are followed to permit multi-technique imaging. As a result, this setup allows any laboratory with a reflected light microscope to have access to direct correlative imaging of frozen hydrated samples.  相似文献   
996.
Studying the physiological properties and synaptic connections of specific neurons in the intact tissue is a challenge for those cells that lack conspicuous morphological features or show a low population density. This applies particularly to retinal amacrine cells, an exceptionally multiform class of interneurons that comprise roughly 30 subtypes in mammals1. Though being a crucial part of the visual processing by shaping the retinal output2, most of these subtypes have not been studied up to now in a functional context because encountering these cells with a recording electrode is a rare event.Recently, a multitude of transgenic mouse lines is available that express fluorescent markers like green fluorescent protein (GFP) under the control of promoters for membrane receptors or enzymes that are specific to only a subset of neurons in a given tissue3,4. These pre-labeled cells are therefore accessible to directed microelectrode targeting under microscopic control, permitting the systematic study of their physiological properties in situ. However, excitation of fluorescent markers is accompanied by the risk of phototoxicity for the living tissue. In the retina, this approach is additionally hampered by the problem that excitation light causes appropriate stimulation of the photoreceptors, thus inflicting photopigment bleaching and transferring the retinal circuits into a light-adapted condition. These drawbacks are overcome by using infrared excitation delivered by a mode-locked laser in short pulses of the femtosecond range. Two-photon excitation provides energy sufficient for fluorophore excitation and at the same time restricts the excitation to a small tissue volume minimizing the hazards of photodamage5. Also, it leaves the retina responsive to visual stimuli since infrared light (>850 nm) is only poorly absorbed by photopigments6.In this article we demonstrate the use of a transgenic mouse retina to attain electrophysiological in situ recordings from GFP-expressing cells that are visually targeted by two-photon excitation. The retina is prepared and maintained in darkness and can be subjected to optical stimuli which are projected through the condenser of the microscope (Figure 1). Patch-clamp recording of light responses can be combined with dye filling to reveal the morphology and to check for gap junction-mediated dye coupling to neighboring cells, so that the target cell can by studied on different experimental levels.  相似文献   
997.
Laser axotomy followed by time-lapse microscopy is a sensitive assay for axon regeneration phenotypes in C. elegans1. The main difficulty of this assay is the perceived cost ($25-100K) and technical expertise required for implementing a laser ablation system2,3. However, solid-state pulse lasers of modest costs (<$10K) can provide robust performance for laser ablation in transparent preparations where target axons are "close" to the tissue surface. Construction and alignment of a system can be accomplished in a day. The optical path provided by light from the focused condenser to the ablation laser provides a convenient alignment guide. An intermediate module with all optics removed can be dedicated to the ablation laser and assures that no optical elements need be moved during a laser ablation session. A dichroic in the intermediate module allows simultaneous imaging and laser ablation. Centering the laser beam to the outgoing beam from the focused microscope condenser lens guides the initial alignment of the system. A variety of lenses are used to condition and expand the laser beam to fill the back aperture of the chosen objective lens. Final alignment and testing is performed with a front surface mirrored glass slide target. Laser power is adjusted to give a minimum size ablation spot (<1um). The ablation spot is centered with fine adjustments of the last kinematically mounted mirror to cross hairs fixed in the imaging window. Laser power for axotomy will be approximately 10X higher than needed for the minimum ablation spot on the target slide (this may vary with the target you use). Worms can be immobilized for laser axotomy and time-lapse imaging by mounting on agarose pads (or in microfluidic chambers4). Agarose pads are easily made with 10% agarose in balanced saline melted in a microwave. A drop of molten agarose is placed on a glass slide and flattened with another glass slide into a pad approximately 200 um thick (a single layer of time tape on adjacent slides is used as a spacer). A "Sharpie" cap is used to cut out a uniformed diameter circular pad of 13mm. Anesthetic (1ul Muscimol 20mM) and Microspheres (Chris Fang-Yen personal communication) (1ul 2.65% Polystyrene 0.1 um in water) are added to the center of the pad followed by 3-5 worms oriented so they are lying on their left sides. A glass coverslip is applied and then Vaseline is used to seal the coverslip and prevent evaporation of the sample.  相似文献   
998.
建立克拉维酸生产中废乙酸乙酯的快捷评价方法。采用紫外吸收扫描,以吸收面积作为评价指标,全面评价废乙酸乙酯中的杂质残留。选用不同的树脂吸附处理废乙酸乙酯。结果表明:废乙酸乙酯经FPA90Cl树脂吸附处理后,紫外吸收面积最小,仅有225.601±5.499,残留的杂质最少。经条件优化后,批处理量为60 m3废乙酸乙酯的树脂用于克拉维酸生产,产品质量与新乙酸乙酯生产的产品质量相近。使用树脂处理废乙酸乙酯可减轻乙酸乙酯蒸馏回收和环保的压力,降低生产成本,具有良好的经济效益和环境效益。  相似文献   
999.
We present a multi‐modal optical diagnostic approach utilizing a combined use of Fluorescence Intravital Microscopy (FIM), Dynamic Light Scattering (DLS) and Spectrally Enhanced Microscopy (SEM) modalities for in vivo imaging of tumor vascular network and blood microcirculation. FIM is used for imaging of tumor surroundings and microenvironment, SEM provides information regarding blood vessels topography, whereas DLS is applied for functional imaging of vascular network and blood microcirculation. This complementary combination of the imaging approaches is extremely useful for functional in vivo imaging of blood vasculature and tumor microenvironment. The technique has also a great potential in vascular biology and can significantly expand the capabilities of tumor angiogenesis studies and notably contribute to the development of cancer treatment. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
1000.
A goal of synthetic biology is to make biological systems easier to engineer. One of the aims is to design, with nanometer-scale precision, biomaterials with well-defined properties. The surface-layer protein SbpA forms 2D arrays naturally on the cell surface of Lysinibacillus sphaericus, but also as the purified protein in solution upon the addition of divalent cations. The high propensity of SbpA to form crystalline arrays, which can be simply controlled by divalent cations, and the possibility to genetically alter the protein, make SbpA an attractive molecule for synthetic biology. To be a useful tool, however, it is important that a simple protocol can be used to produce recombinant wild-type and modified SbpA in large quantities and in a biologically active form. The present study addresses this requirement by introducing a mild and non-denaturing purification protocol to produce milligram quantities of recombinant, active SbpA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号