全文获取类型
收费全文 | 2166篇 |
免费 | 295篇 |
国内免费 | 176篇 |
专业分类
2637篇 |
出版年
2024年 | 9篇 |
2023年 | 58篇 |
2022年 | 41篇 |
2021年 | 91篇 |
2020年 | 105篇 |
2019年 | 132篇 |
2018年 | 105篇 |
2017年 | 106篇 |
2016年 | 124篇 |
2015年 | 125篇 |
2014年 | 110篇 |
2013年 | 166篇 |
2012年 | 106篇 |
2011年 | 87篇 |
2010年 | 74篇 |
2009年 | 100篇 |
2008年 | 105篇 |
2007年 | 104篇 |
2006年 | 79篇 |
2005年 | 77篇 |
2004年 | 44篇 |
2003年 | 63篇 |
2002年 | 54篇 |
2001年 | 49篇 |
2000年 | 45篇 |
1999年 | 31篇 |
1998年 | 38篇 |
1997年 | 38篇 |
1996年 | 27篇 |
1995年 | 31篇 |
1994年 | 22篇 |
1993年 | 17篇 |
1992年 | 34篇 |
1991年 | 26篇 |
1990年 | 25篇 |
1989年 | 21篇 |
1988年 | 19篇 |
1987年 | 11篇 |
1986年 | 14篇 |
1985年 | 24篇 |
1984年 | 19篇 |
1983年 | 19篇 |
1982年 | 12篇 |
1981年 | 13篇 |
1980年 | 12篇 |
1979年 | 5篇 |
1978年 | 2篇 |
1977年 | 5篇 |
1975年 | 4篇 |
1974年 | 7篇 |
排序方式: 共有2637条查询结果,搜索用时 15 毫秒
91.
The role of macrophages, their products, and the specific antibody response were examined during chronic Trichinella spiralis infection in BALB/c mice. Adult T. spiralis in intestines were detected from 5 to 20 dpi. Muscle larvae numbers peaked at 45 dpi and thereafter a reduction was noted. The highest numbers of macrophages in the peritoneal cavity of infected mice were obtained up to 30 dpi. The production of NO by macrophages in infected mice was suppressed at 5 dpi, and then NO release increased until 45 dpi. The levels of NO in plasma and urine were lower in infected mice during the entire experiment in comparison to control. The production of O(2)(-) in peritoneal macrophages was inhibited during the first two weeks after infection and then increased until 90 dpi. Circulating T. spiralis antigens in plasma and urine were detected from 5 to 30 dpi. Specific IgM and IgA in serum increased until 20 dpi. IgG, IgG(1), and IgG(2) levels in serum increased until 60 dpi. 相似文献
92.
Diapause in a New Zealand strain of codling moth (Cydia pomonella Linnaeus [Lepidoptera: Olethreutidae]) was induced in larvae by photoperiods of 15 h or less. Once diapause had been initiated, it could not be terminated by any combination of conditions tested for at least 20 days after cocooning. In diapausing larvae a low rate of pupation occurred at 25 °C under a long day (18 h) photoperiod. A high rate of pupation was achieved under a long day regime when larvae were decocooned, and provided with apple as nourishment. Diapause could be terminated predictably in 94–100% of larvae by 1) conditioning at 15 °C and constant darkness for periods of 40–100 days, then 2) chilling at 2±2 °C and constant darkness for 20–50 days followed by 3) any post-chill condition periods at 25 °C, 18 h photoperiod. Complete diapause termination was achieved when 100 days conditioning was followed by 30 days or 50 days post-chill period. Under these conditions, 76% termination occurred in the post-chill period after 10 days, and 93% after 25 days.To terminate diapause in codling moth larvae, we recommend that a 100 days conditioning followed by 30 days chilling and 50 days post chilling periods be used. 相似文献
93.
Adriana Alzate Fons van der Plas Fernando A. Zapata Dries Bonte Rampal S. Etienne 《Ecology and evolution》2019,9(4):1567-1577
Dispersal is thought to be an important process determining range size, especially for species in highly spatially structured habitats, such as tropical reef fishes. Despite intensive research efforts, there is conflicting evidence about the role of dispersal in determining range size. We hypothesize that traits related to dispersal drive range sizes, but that complete and comprehensive datasets are essential for detecting relationships between species’ dispersal ability and range size. We investigate the roles of six traits affecting several stages of dispersal (adult mobility, spawning mode, pelagic larval duration (PLD), body size, aggregation behavior, and circadian activity), in explaining range size variation of reef fishes in the Tropical Eastern Pacific (TEP). All traits, except for PLD (148 species), had data for all 497 species in the region. Using a series of statistical models, we investigated which traits were associated with large range sizes, when analyzing all TEP species or only species with PLD data. Furthermore, using null models, we analyzed whether the PLD‐subset is representative of the regional species pool. Several traits affecting dispersal ability were strongly associated with range size, although these relationships could not be detected when using the PLD‐subset. Pelagic spawners (allowing for passive egg dispersal) had on average 56% larger range sizes than nonpelagic spawners. Species with medium or high adult mobility had on average a 25% or 33% larger range, respectively, than species with low mobility. Null models showed that the PLD‐subset was nonrepresentative of the regional species pool, explaining why model outcomes using the PLD‐subset differed from the ones based on the complete dataset. Our results show that in the TEP, traits affecting dispersal ability are important in explaining range size variation. Using a regionally complete dataset was crucial for detecting the theoretically expected, but so far empirically unresolved, relationship between dispersal and range size. 相似文献
94.
Knowledge of the rate, distance and direction of dispersal within and among breeding areas is required to understand and predict demographic and genetic connectivity and resulting population and evolutionary dynamics. However dispersal rates, and the full distributions of dispersal distances and directions, are rarely comprehensively estimated across all spatial scales relevant to wild populations. We used re‐sightings of European Shags Phalacrocorax aristotelis colour‐ringed as chicks on the Isle of May (IoM), UK, to quantify rates, distances and directions of dispersal from natal to subsequent breeding sites both within IoM (within‐colony dispersal) and across 27 other breeding colonies covering 1045 km of coastline (among‐colony dispersal). Additionally, we used non‐breeding season surveys covering 895 km of coastline to estimate breeding season detection probability and hence potential bias in estimated dispersal parameters. Within IoM, 99.6% of individuals dispersed between their natal and observed breeding nest‐site. The distribution of within‐colony dispersal distances was right‐skewed; mean distance was shorter than expected given random settlement within IoM, yet some individuals dispersed long distances within the colony. The distribution of within‐colony dispersal directions was non‐uniform but did not differ from expectation given the spatial arrangement of nest‐sites. However, 10% of all 460 colour‐ringed adults that were located breeding had dispersed to a different colony. The maximum observed dispersal distance (170 km) was much smaller than the maximum distance surveyed (690 km). The distribution of among‐colony dispersal distances was again right‐skewed. Among‐colony dispersal was directional, and differed from random expectation and from the distribution of within‐colony dispersal directions. Non‐breeding season surveys suggested that the probability of detecting a colour‐ringed adult at its breeding location was high in the northeastern UK (98%). Estimated dispersal rates and distributions were therefore robust to incomplete detection. Overall, these data demonstrate skewed and directionally divergent dispersal distributions across small (within‐colony) and large (among‐colony) scales, indicating that dispersal could create genetic and demographic connectivity within the study area. 相似文献
95.
Miguel Gandra Jorge Assis Manuel Ramos Martins David Abecasis 《Molecular biology and evolution》2021,38(4):1402
Knowledge on genetic structure is key to understand species connectivity patterns and to define the spatiotemporal scales over which conservation management plans should be designed and implemented. The distribution of genetic diversity (within and among populations) greatly influences species ability to cope and adapt to environmental changes, ultimately determining their long-term resilience to ecological disturbances. Yet, the drivers shaping connectivity and structure in marine fish populations remain elusive, as are the effects of fishing activities on genetic subdivision. To investigate these questions, we conducted a meta-analysis and compiled genetic differentiation data (FST/ΦST estimates) for more than 170 fish species from over 200 published studies globally distributed. We modeled the effects of multiple life-history traits, distance metrics, and methodological factors on observed population differentiation indices and specifically tested whether any signal arising from different exposure to fishing exploitation could be detected. Although the myriad of variables shaping genetic structure makes it challenging to isolate the influence of single drivers, results showed a significant correlation between commercial importance and genetic structure, with widespread lower population differentiation in commercially exploited species. Moreover, models indicate that variables commonly used as proxy for connectivity, such as larval pelagic duration, might be insufficient, and suggest that deep-sea species may disperse further. Overall, these results contribute to the growing body of knowledge on marine genetic connectivity and suggest a potential effect of commercial fisheries on the homogenization of genetic diversity, highlighting the need for additional research focused on dispersal ecology to ensure long-term sustainability of exploited marine species. 相似文献
96.
Understanding connectivity over different spatial and temporal scales is fundamental for managing of ecological systems. However, controversy exists for wintertime ecological connectivity between the Yangtze River Estuary (YRE) and inner southwestern Yellow Sea. Here, we investigated ecological connectivity between the YRE and inner southwestern Yellow Sea in wintertime by precisely pinpointing the source of the newly colonized populations of a winter‐spawning rocky intertidal invertebrate, Littorina brevicula (Philippi, 1844), on artificial structures along the coast of the Yangtze River Delta (YRD) using mitochondrial ND6 sequences and microsatellite data. Clear phylogeographic and genetic differentiation were detected between natural rocky populations south and north of the YRE, which resulted from the lack of hard substrate for rocky invertebrates in the large YRD coast. For the newly colonized populations on the coast of YRD, most individuals (98%) to the south of ~33.5°N were from natural rocky populations to the south of the YRE and most of those (94%) to the north of ~33.5°N were from the northern natural rocky populations, which demonstrated strong ecological connectivity between the inner southwestern Yellow Sea and the YRE in winter time. We presented the first genetic evidence that demonstrated a northward wintertime coastal current in the inner southwestern Yellow Sea, and precisely illustrated the boundary of the coastal current recently proposed by numerical experiment. These results indicated that the YRE serves as an important source of materials and energy for the inner southwestern Yellow Sea in winter, which can be crucial for the function of the Yellow Sea ecosystem. 相似文献
97.
We studied the species composition and life history patterns of shelter‐building microlepidoptera on the willow Salix miyabeana in Hokkaido, northern Japan. We identified 23 microlepidopteran species across seven families that constructed leaf shelters. Species in Tortricidae and Pyralidae comprised approximately 90% of the total number of sampled shelter‐building microlepidoptera that reached adult eclosion in the laboratory. Seasonal changes in the density of leaf shelters showed two peaks: early June and mid‐August. In June, caterpillars of Gypsonoma bifasciata, Gypsonoma ephoropa, Acleris issikii and Saliciphage acharis were the principal shelter builders, while in August shelters were constructed primarily by caterpillars of Nephopterix adelphella, A. issikii and S. acharis. Approximately 90% of leaf shelters were constructed on the top portions of shoots, suggesting that most shelter‐building caterpillars prefer to build leaf shelters here. 相似文献
98.
Alana Grech Emmanuel Hanert Len McKenzie Michael Rasheed Christopher Thomas Samantha Tol Mingzhu Wang Michelle Waycott Jolan Wolter Rob Coles 《Global Change Biology》2018,24(7):3093-3104
The rate of exchange, or connectivity, among populations effects their ability to recover after disturbance events. However, there is limited information on the extent to which populations are connected or how multiple disturbances affect connectivity, especially in coastal and marine ecosystems. We used network analysis and the outputs of a biophysical model to measure potential functional connectivity and predict the impact of multiple disturbances on seagrasses in the central Great Barrier Reef World Heritage Area (GBRWHA), Australia. The seagrass networks were densely connected, indicating that seagrasses are resilient to the random loss of meadows. Our analysis identified discrete meadows that are important sources of seagrass propagules and that serve as stepping stones connecting various different parts of the network. Several of these meadows were close to urban areas or ports and likely to be at risk from coastal development. Deep water meadows were highly connected to coastal meadows and may function as a refuge, but only for non‐foundation species. We evaluated changes to the structure and functioning of the seagrass networks when one or more discrete meadows were removed due to multiple disturbance events. The scale of disturbance required to disconnect the seagrass networks into two or more components was on average >245 km, about half the length of the metapopulation. The densely connected seagrass meadows of the central GBRWHA are not limited by the supply of propagules; therefore, management should focus on improving environmental conditions that support natural seagrass recruitment and recovery processes. Our study provides a new framework for assessing the impact of global change on the connectivity and persistence of coastal and marine ecosystems. Without this knowledge, management actions, including coastal restoration, may prove unnecessary and be unsuccessful. 相似文献
99.
Monthly trends shown by gonadosomatic indices, the prevalence of the different gonadal stages, and the size distribution of the oocytes, indicate that the large marine and commercially important plotosid Cnidoglanis macrocephalus spawns in Wilson Inlet between October and January. The conclusion that spawning occurs within this seasonally closed estuary was confirmed by the presence of males in large nests and by the capture of newly-hatched, yolk sac larvae from one of those nests. The fact that C. macrocephalus, which is also widely distributed in coastal marine waters throughout much of southern Australia, can spawn within Wilson Inlet would be of particular value to this species in those periods when closure of the estuary would preclude a seawards spawning migration. Sexual maturity is size dependent, with spawning rarely occurring before fish have reached a total length of 425 mm. Sexual maturity was attained by a few fish at the end of their second year, by several at the end of their third year and by most, if not all fish, at the end of their fourth year. Comparisons with data for the more northern and permanently open Swan Estuary indicate that C. macrocephalus also spawns within that system and that the spawning time of this species is related to water temperature. The adult male guards the larvae under its pelvic fins in burrows. The larvae increased in total length from 29 mm just after hatching to 43 mm in the 17–18 days after capture, during which time their yolk sac was resorbed. Details are given of the morphology, morphometrics, meristics and pigmentation of larval C. macrocephalus. In comparison with the larvae of three other plotosid genera, the larva of C. macrocephalus is far larger in size and more developed at hatching and takes a shorter time to transform into a juvenile. 相似文献
100.
《Biotechnology and bioengineering》2018,115(9):2268-2279
Morphological parameters are commonly used to predict transport and metabolic kinetics in biofilms. Yet, quantification of biofilm morphology remains challenging because of imaging technology limitations and lack of robust analytical approaches. We present a novel set of imaging and image analysis techniques to estimate internal porosity, pore size distributions, and pore network connectivity to a depth of 1 mm at a resolution of 10 µm in a biofilm exhibiting both heterotrophic and nitrifying activities. Optical coherence tomography (OCT) scans revealed an extensive pore network with diameters as large as 110 µm directly connected to the biofilm surface and surrounding fluid. Thin‐section fluorescence in situ hybridization microscopy revealed that ammonia‐oxidizing bacteria (AOB) distributed through the entire thickness of the biofilm. AOB were particularly concentrated in the biofilm around internal pores. Areal porosity values estimated from OCT scans were consistently lower than those estimated from multiphoton laser scanning microscopy, though the two imaging modalities showed a statistically significant correlation (r = 0.49, p < 0.0001). Estimates of areal porosity were moderately sensitive to gray‐level threshold selection, though several automated thresholding algorithms yielded similar values to those obtained by manually thresholding performed by a panel of environmental engineering researchers (±25% relative error). These findings advance our ability to quantitatively describe the geometry of biofilm internal pore networks at length scales relevant to engineered biofilm reactors and suggest that internal pore structures provide crucial habitat for nitrifier growth. 相似文献