首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3157篇
  免费   250篇
  国内免费   113篇
  2024年   10篇
  2023年   74篇
  2022年   113篇
  2021年   141篇
  2020年   126篇
  2019年   155篇
  2018年   137篇
  2017年   102篇
  2016年   77篇
  2015年   88篇
  2014年   171篇
  2013年   166篇
  2012年   89篇
  2011年   86篇
  2010年   121篇
  2009年   140篇
  2008年   119篇
  2007年   134篇
  2006年   126篇
  2005年   125篇
  2004年   87篇
  2003年   64篇
  2002年   63篇
  2001年   65篇
  2000年   45篇
  1999年   45篇
  1998年   62篇
  1997年   43篇
  1996年   32篇
  1995年   52篇
  1994年   37篇
  1993年   41篇
  1992年   34篇
  1991年   33篇
  1990年   44篇
  1989年   38篇
  1988年   41篇
  1987年   45篇
  1986年   38篇
  1985年   40篇
  1984年   46篇
  1983年   29篇
  1982年   41篇
  1981年   35篇
  1980年   16篇
  1979年   20篇
  1978年   13篇
  1977年   14篇
  1976年   16篇
  1973年   15篇
排序方式: 共有3520条查询结果,搜索用时 78 毫秒
31.
Summary A method for the isolation of brush-border membranes of large intestinal epithelial cells was developed, which is based on the purification of intact brush-border caps by Percoll® density-gradient centrifugation followed by separation of the vesiculated brush-border membranes on sucrose gradients. The procedure has two major advantages in comparison to known methods: 1) its first step does not depend on the determination of marker enzymes and 2) the method is applicable to rats as well as rabbits without major modifications. Due to the lack of an accepted marker for the colonic brush-border membrane the validity of the isolation procedure was tested by its application to the small intestine. Rat small intestinal brush-border membranes were enriched 21-fold when compared to the homogenate. The method was used to evaluate alkaline phosphatase as a marker enzyme for the colonic brush-border membrane. The results suggest that alkaline phosphatase is not exclusively localized in the brush-border membrane since this enzyme was also associated with membranes having different physical properties.  相似文献   
32.
Summary The anion transport protein of the human erythrocyte membrane, band 3, was solubilized and purified in solutions of the non-ionic detergent Triton X-100. It was incorporated into spherical lipid bilayers by the following procedure: (1) Dry phosphatidylcholine was suspended in the protein solution. Octylglucopyranoside was added until the milky suspension became clear. (2) The sample was dialyzed overnight against detergentfree buffer. (3) Residual Triton X-100 was removed from the opalescent vesicle suspension by sucrose density gradient centrifugation and subsequent dialysis. Sulfate efflux from the vesicles was studied, under exchange conditions, using a filtration method. Three vesicle subpopulations could be distinguished by analyzing the time course of the efflux. One was nearly impermeable to sulfate, and efflux from another was due to leaks. The largest subpopulation, however, showed transport characteristics very similar to those of the anion transport system of the intact erythrocyte membrane: transport numbers (at 30°C) close to 20 sulfate molecules per band 3 and min, an activation energy of approx. 140 kJ/mol, a pH maximum at pH 6.2, saturation of the sulfate flux at sulfate concentrations around 100mm, inhibition of the flux by H2DIDS and flufenamate (approx.K l-values at 30°C: 0.1 and 0.7 m, respectively), and right-side-out orientation of the transport protein (as judged from the inhibition of sulfate efflux by up to 98% by externally added H2DIDS). Thus, the system represents, for the first time, a reconstitution of all the major properties of the sulfate transport across the erythrocyte membrane.  相似文献   
33.
Summary The osmotic water permeabilityP f of brush border (BBM) and basolateral (BLM) membrane vesicles from rat small intestine and renal cortex was studied by means of stopped-flow spectrophotometry. Scattered light intensity was used to follow vesicular volume changes upon osmotic perturbation with hypertonic mannitol solutions. A theoretical analysis of the relationship of scattered light intensity and vesicular volume justified a simple exponential approximation of the change in scattered light intensity. The rate constants extracted from fits to an exponential function were proportional to the final medium osmolarity as predicted by theory. For intestinal membranes, computer analysis of optical responses fitted well with a single-exponential treatment. For renal membranes a double-exponential treatment was needed, implying two distinct vesicle populations.P f values for BBM and BLM preparations of small intestine were equal and amount to 60 m/sec. For renal preparations,P f values amount to 600 m/sec for the fast component, BBM as well as BLM, and to 50 (BBM) and 99 (BLM) m/sec for the slow component. The apparent activation energy for water permeation in intestinal membranes was 13.3±0.6 and in renal membranes, 1.0±0.3 kCal/mole, between 25 and 35°C. The mercurial sulfhydryl reagentpCMBS inhibited completely and reversibly the highP f value in renal brush border preparations. These observations suggest that in intestinal membranes water moves through the lipid matrix but that in renal plasma membranes water channels may be involved. From the highP f values of renal membrane vesicles a transcellular water permeability for proximal tubules can be calculated which amounts to 1 cm/sec. This value allows for an entirely transcellular route for water flow during volume reabsorption.  相似文献   
34.
Membrane vesicles of cellular dimensions fit in two geometric series   总被引:1,自引:0,他引:1  
Summary Preparations of basal-lateral plasma membranes from rat intestinal epithelial cells were analyzed with the analytical centrifuge. In these preparations a number of well-defined membrane fractions were observed. The particle weights of these fractions appear to fit in two geometric series. Until now only relatively small vesicles up to a diameter of about 1 m were observed. In our preparation we have observed vesicles up to a diameter of 7.5 m. Therefore, even vesicles with the same size as the plasma membranes of intact cells fit in the two geometric series.  相似文献   
35.
Cholinergic synaptic vesicles were isolated from the electric organs of the electric eel (Electrophorus electricus) and the electric catfish (Malapterurus electricus) as well as from the diaphragm of the rat by density gradient centrifugation followed by column chromatography on Sephacryl-1000. This was verified by both biochemical and electron microscopic criteria. Differences in size between synaptic vesicles from the various tissue sources were reflected by their elution pattern from the Sephacryl column. Specific activities of acetylcholine (ACh; in nmol/mg of protein) of chromatography-purified vesicle fractions were 36 (electric eel), 2 (electric catfish), and 1 (rat diaphragm). Synaptic vesicles from all three sources contained ATP in addition to ACh (molar ratios of ACh/ATP, 9-12) as well as binding activity for an antibody raised against Torpedo cholinergic synaptic vesicle proteoglycan. Synaptic vesicles from rat diaphragm contained binding activity for the monoclonal antibody asv 48 raised against a rat brain 65-kilodalton synaptic vesicle protein. Antibody asv 48 binding was absent from electric eel and electric catfish synaptic vesicles. These antibody binding results, which were obtained by a dot blot assay on isolated vesicles, directly correspond to the immunocytochemical results demonstrating fluorescein isothiocyanate staining in the respective nerve terminals. Our results imply that ACh, ATP, and proteoglycan are common molecular constituents of motor nerve terminal-derived synaptic vesicles from Torpedo to rat. In addition to ACh, both ATP and proteoglycan may play a specific role in the process of cholinergic signal transmission.  相似文献   
36.
The binding of lipophilic ions to the membrane of envelope vesicles from Halobacterium halobium was examined in the absence and presence of membrane potential. The lipophilic ions used constitute a homologous series of (Phe)3-P+-(CH2)n-CH3 (n = 0–4) and tetraphenylphosphonium (TPP+). In the absence of membrane potential, the amounts of binding were proportional to the probe concentration in the medium when the concentration is dilute. Upon illumination, interior negative membrane potential is generated which induces the uptake of phosphonium cation probe. 2 μM were employed as the initial probe concentration. The real membrane potential was evaluated by means of extrapolation to the state of no binding: The values of for various probes are plotted against the binding coefficient. Here, Ciapp is the apparent intra-vesicular concentration of the probes which is calculated without consideration of bound probes. The ordinate intercept of the plot gives the true concentration ratio, and from this the membrane potential is evaluated. The membrane potential-dependent binding was analysed with a model: the membrane is split into two halves, outer and inner half, and the amounts of bound probes in each region are governed by the concentration in the contiguous solution. We obtained a formula which describes amounts of binding as a function of the membrane potential.  相似文献   
37.
Summary A stopped-flow nephelometric technique was used to examine osmotic water flow across small intestinal brush-border membranes. Brush-border membrane vesicles (BBMV) were prepared from rat small intestine by calcium precipitation. Scattered 500 nm light intensity at 90° to incident was a linear function of the number of vesicles in suspension, and of the reciprocal of the suspending medium osmolality. When BBMV were mixed with hyperosmotic mannitol solutions there was a rapid increase in the intensity of scattered light that could be fit to a single exponential function. The rate constant for vesicle shrinking varied with temperature and the size of the imposed osmotic gradient. At 25°C and an initial osmotic gradient of 50 mOsm, the rate constant was 1.43±0.044 sec–1. An Arrhenius plot of the temperature dependence of vesicle shrinking showed a break at about 25°C with an activation energy of 9.75±1.04 kcal/mole from 11 to 25°C and 17.2±0.55 kcal/mole from 25 to 37°C. The pore-forming antibiotic gramicidin increased the rate of osmotically driven water efflux and decreased the activation energy of the process to 4.51±0.25 kcal/mole. Gramicidin also increased the sodium permeability of these membranes as measured by the rate of vesicle reswelling in hyperosmotic NaSCN medium. Gramicidin had no effect on mannitol permeability. Assuming spherical vesicles of 0.1 m radius, an osmotic permeability coefficient of 1.2×10–3 cm/sec can be estimated for the native brush-border membranes at 25°C. These fesults are consistent with the solubility-diffusion model for water flow across small intestinal BBMV but are inconsistent with the existence there of large aqueous pores.  相似文献   
38.
Membrane-bound MgATPase activity from roots of young sugar beet ( Beta vulgaris L. cv. Monohill) was investigated in a membrane fraction purified by partition in an aqueous polymer two-phase system. After two steps of "washing" with fresh bottom phase (rich in dextran), the polyethylene glycol rich top phase (U3) was practically free of mitochondrial membranes (cytochrome oxidase), and the remaining MgATPase activity showed high substrate specificity for ATP. An optimum for the MgATPase activity was found at pH 7. The activation by Na+ or K+ was strongest on the acid side without any observable shift in pH optimum. Oligomycin had no effect, but vanadate strongly inhibited the U3 MgATPase and the K+ activation was lost. The complex activation pattern achieved by varying the Na+/K+ ratio at constant total concentration was interpreted as a synergistic (Na++ K+)-activation. The U3 fraction MgATP-ase activity showed a 4-fold increase in the presence of 0.01% Triton X-100 implying that the MgATPase activity is located in vesicles of which 75% or more are sealed with the ATP binding site on the inside. Comparison with the properties of plasma membrane. ATPases from other plants indicated that the U3 fraction MgATPase was mainly of plasma membrane origin.  相似文献   
39.
Summary Secretory vesicles involved in cell wall synthesis (wall vesicles) and the Golgi apparatus have been compared in conventionally fixed and freeze substituted hyphae of the oomycete fungusSaprolegnia ferax. Wall vesicles freeze substituted in various fluids range from spherical to tubular and contain an intensely staining, phosphorous rich matrix. In contrast diverse conventional fixations cause artefactual constrictions in most tubular vesicles and loss of their intensely staining contents. These data are interpreted to show the existence of an intravesicular skeletal system, with cellular regulation, to determine vesicle morphology and intravesicular synthesis of a hypothetical phosphorylated glycolipid cell wall precursor. Whilst freeze substitution gives superior preservation of wall vesicle morphology, it does not demonstrate any preferential association between wall vesicles and microtubules thus suggesting that microtubules are only indirectly involved in wall vesicle transport. Freeze substitution is superior to conventional fixation for analysis of the Golgi apparatus because it uniquely reveals both differentiation of a specific single cisterna in each Golgi body and greater differences in membrane thicknesses throughout the endomembrane system.  相似文献   
40.
The fluorescence decays of pyrene in small and large unilamellar L,-dipalmitoylphosphatidylcholine vesicles have been investigated as a function of probe concentration and temperature. When the molar ratio of pyrene to phospholipid equals 1:3000, no excimer emission is observed and the fluorescence decays are mono-exponential. When this ratio is equal to or higher than 1:120, excimer formation is observed.Above the phase transition temperature the observed fluorescence decays of monomer and excimer can be adequately described by a bi-exponential function. The monomer decays can be equally well fitted to a decay law which takes into account a time-dependence in the probe diffusion rate constant. The fluorescence decay kinetics are compatible with the excimer formation scheme which is valid in an isotropic medium. The excimer lifetime and the (apparent) rate constant of excimer formation have been determined as a function of probe concentration at different temperatures above the phase transition temperature. The activation energy of excimer formation is found to be 29.4±1.3 kJ/mol. In small unilamellar vesicles the diffusion constant associated with the pyrene excimer formation process varies from 8.0x10-7 cm2/s at 40°C to 2.2x10-6 cm2/s at 70°C.Below the phase transition temperature the monomer decays can be described by a decay law which takes into account a time dependence of the rate constant of excimer formation. The lateral diffusion coefficient of pyrene calculated from the decay fitting parameters of the monomer region varies from 4.0x10-9 cm2/s at 20°C to 7.9x10-8 cm2/s at 35°C. No significant difference could be observed between the pyrene fluorescence decay kinetics in small and large unilamellar vesicles.Abbreviations SUV small unilamellar vesicles - LUV large unilamellar vesicles - DPPC dipalmitoylphosphatidylcholine - DMPC dimyristoylphosphatidylcholine - FRAP fluorescence recovery after photobleaching Part of this research has been presented at the 5th international symposium on surfactants in solution. Bordeaux, July 9th–13th 1984  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号