首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   4篇
  国内免费   18篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   5篇
  2020年   10篇
  2019年   4篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   8篇
  1999年   2篇
  1998年   4篇
  1995年   1篇
  1994年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
81.
当前生态学研究前沿正在走向城市,更加关注城市中人类福祉的多元化。而我们在工作中也深刻体会到,对于以人为核心的城市复合生态系统,有一些问题用已有学科是难以解决的。在这一情况下,提出了景感生态学这一研究方向。系统阐述了景感生态学的概念与内涵、学科框架、研究框架,从国家重大开发建设中的生态环境保障系统方案和景感生态规划与设计等方面总结了景感生态学的研究进展,并就景感生态学发展方向和重点提出展望。  相似文献   
82.
城市用地日益紧张,城市建(构)筑物高度不断抬升,理应赋予城市空间载体更多的生态功能。景感生态学倡导在保持、改善和增加城市生态系统服务的同时提升居民满意度和可持续发展能力。城市立体绿化具有降温、降噪、滞尘、固碳等功能,是节能减排的有效举措。通过对深圳市立体绿化实地调查和景感生态学分析,剖析了立体绿化在促进居民的视觉、听觉、嗅觉、味觉及触觉等物理感知及心理认知功能方面的作用,以及增强城市生态系统服务的机理。研究表明,立体绿化是城市景感营造的有效手段,既能增强城市生态系统服务价值,也能提高城市空间利用率;在增加城市绿视率的同时,丰富了居民的物理感知及心理认知。最后,讨论了景感生态学理论与方法在立体绿化中的实际应用,以及景感营造技术在城市绿色建筑中的作用,以期让景感营造技术为提升立体绿化水平,进而为促进城市绿地系统规划提供支撑。  相似文献   
83.
李爽  田野  唐明方  严岩 《生态学报》2021,41(14):5849-5856
生态系统保护与修复已成为我国生态文明建设的一项核心内容,自2016年以来,在全国24个省(自治区、直辖市)已开展了25个山水林田湖草生态保护修复工程试点工程。以大凌河流域北票段为研究区,探讨了景感生态学理论在山水林田湖草生态系统保护与修复实践中的应用。基于景感生态学理论,构建大凌河流域北票段生态系统保护与修复综合治理框架,以保持、改善和提升生态系统服务,实现可持续发展为目标,构建了"一中心、二重点、五要素、六工程"的生态系统保护与修复景感空间体系,并基于此将大凌河流域北票段生态系统保护与修复分为5个重要治理区域,形成"一带四区"的生态安全格局,提出了应用景感生态学理论,构建区域居民的共同行为规范,引导并实现人类对自然生态系统的有利影响,进一步提升生态系统保护与修复效果的对策建议。通过大凌河流域北票段的分析案例,以景感营造的理念开展区域生态系统保护与修复顶层设计,为促进区域可持续发展提供思路和途径。  相似文献   
84.
85.
The loss and degradation of mangrove forests have triggered global restoration efforts to support biodiversity and ecosystem services, including fish stock enhancement. As mangrove restoration accelerates, it is important to evaluate outcomes for species that play functional roles in ecosystems and support services, yet this remains a clear knowledge gap. There is remarkably little information, for example, about how fish use of mangroves varies as restored vegetation matures, hampering efforts to include fisheries benefits in natural capital assessments of restoration. We used unbaited underwater cameras within two distinct zones of mangrove forests—fringe and interior—at five pairs of restored-natural mangrove sites of increasing age from restoration in southeast Queensland, Australia. We used deep learning to automatically extract data for the four most common species: yellowfin bream (Acanthopagrus australis), sea mullet (Mugil cephalus), common toadfish (Tetractenos hamiltoni), and common silverbiddy (Gerres subfasciatus). The abundance of these species varied among sites and zones, but was equal or greater in restored sites compared to paired natural sites. Despite younger restored sites having dramatically lower structural vegetation complexity, abundances did not increase with restoration site maturity. Furthermore, while yellowfin bream and sea mullet were more abundant in the fringe zone, we observed similarities in how fish used fringe and interior zones across all sites. Our paired, space-for-time design provides a powerful test of restoration outcomes for fish, highlighting that even newly restored sites with immature vegetation are readily utilized by key fish species.  相似文献   
86.
Water column metabolism is a major component in the functioning of wetland ecosystems and can be used as an indicator of ecosystem health. The effect of hydrologic pulsing on water column metabolism was studied with 2 year's field data and a validated model for two 1-ha created riparian wetlands in Columbus, OH, USA. Aquatic gross primary productivity (GPP) was measured during hydrologic pulses the first week of April, May and June of 2004 and compared to GPP during steady flow-conditions in April, May and June 2005. Pulses reduced diurnal variation of water temperature, pH and dissolved oxygen, and negatively affected GPP rates. Mean GPP measured during hydrologic flood pulses was 5.4 ± 2.6 kcal m−2 day−1, significantly lower than that measured for comparable months with steady-flow hydrology (10.8 ± 3.3 kcal m−2 day−1). Solar-normalized productivity values of 0.08 ± 0.01% of solar energy during pulses and 0.2 ± 0.02% for steady-flow conditions were also significantly different. Different hyperbolic curves of optimum productivity with water temperature were seen for pulsing and steady-flow conditions. A simulation model with hydrology, metabolism, and dissolved oxygen sub models was calibrated with 2005 steady-flow year data and validated with 2004 pulse year data. Results from both the field study and model simulations suggest that there was a threshold hydraulic inflow rate between 30 and 50 cm day−1 where aquatic metabolism became negatively affected by flow.  相似文献   
87.
Two methods of invertebrate sampling were used to determine how the deliberate introduction of field layer vegetation to broad‐leaved plantations influenced the associated insect assemblages. Enclosed pitfall traps and tent‐like emergence traps were employed at (1) 25‐year‐old plantations where botanical enhancement had taken place a decade previously; (2) “nonenhanced” plantations of a similar age; and (3) local ancient woods, all in Milton Keynes, Buckinghamshire, United Kingdom. The aim was to discover whether enhancement had produced a community intermediate to nonenhanced plantations and naturally established woodland. Enhancement had not successfully created plantations botanically more woodland‐like and plantation types were not constant; however, plant species richness had increased. This was also true of the insect assemblages (Coleoptera, Diptera and Hemiptera), which showed more variation in composition, though woodland communities could still be distinguished. However, those insect species present in the naturally established woods did have a significantly greater frequency and abundance in the enhanced plantations compared to the nonenhanced plantations, especially so with “woodland edge” species. Mantel tests showed significant correlations between the plant species present and insect assemblages taken by both sampling types. Although insect species richness was not significantly higher in the enhanced plantations, this correlated strongly with plant species richness and a measure of vegetation volume. The overall findings suggest that the enhancement had created plantations only subtly more like the local woodlands, though the insect assemblages had responded. However, relative to the time scale of woodland development, it is still early days.  相似文献   
88.
1. Ants modify soil properties via nest construction and by doing this modulate soil resources for other organisms. In this sense ants are recognised as ecosystem engineers. 2. In this framework, two less well‐studied issues are focused on: (i) the permanence of the effects of ant nests on plant communities after colonies have died, and (ii) the scaling up from patch to landscape‐scale effects. 3. The aim of the present study was to address these issues in the open dry forests of Uruguay, inhabited by the ant Atta vollenweideri Forel. The active and abandoned nests of this ant represent different and conspicuous patches (30–60 m2) in the landscape. 4. The soil concentration of sodium, a key element in the system, was substantially higher among active nests, and remains high during the early stages of abandoned nests. Woody species abundance, richness, and composition were affected at the patch scale, and simulation models suggested an increase in species richness at the landscape scale. 5. The present study highlights the importance of abandoned nests for plant‐species richness in the ecosystem engineer framework and the need to advance in an integrative approach to study both local and landscape effects of ant's nests.  相似文献   
89.
On May 25–26, 2000 in Brighton (England), the third in a series of international workshops was held under the umbrella of UNEP addressing issues in Life Cycle Impact Assessment (LCIA). The workshop provided a forum for experts to discuss midpoint vs. endpoint modeling. Midpoints are considered to be links in the cause-effect chain (environmental mechanism) of an impact category, prior to the endpoints, at which characterization factors or indicators can be derived to reflect the relative importance of emissions or extractions. Common examples of midpoint characterization factors include ozone depletion potentials, global warming potentials, and photochemical ozone (smog) creation potentials. Recently, however, some methodologies have adopted characterization factors at an endpoint level in the cause-effect chain for all categories of impact (e.g., human health impacts in terms of disability adjusted life years for carcinogenicity, climate change, ozone depletion, photochemical ozone creation; or impacts in terms of changes in biodiversity, etc.). The topics addressed at this workshop included the implications of midpoint versus endpoint indicators with respect to uncertainty (parameter, model and scenario), transparency and the ability to subsequently resolve trade-offs across impact categories using weighting techniques. The workshop closed with a consensus that both midpoint and endpoint methodologies provide useful information to the decision maker, prompting the call for tools that include both in a consistent framework.  相似文献   
90.
Created wetlands are frequently structurally different from the natural wetlands they are intended to replace. With differences in structure might come differences in function. Most created wetlands in central Pennsylvania have very low amounts of soil organic matter relative to levels found in natural wetlands. However, anecdotal evidence also suggests that plant production is equivalent in created wetlands to natural wetlands. There is little evidence to indicate that this plant biomass in created wetlands is finding its way into the soil as organic matter. This might translate into a lack of function in the mitigation wetlands. To address this issue, we studied plant biomass production in seven created wetlands in central Pennsylvania (USA). We measured above- and below-ground biomass and compared results with known values of soil organic matter and hydrology for the same wetlands. We found biomass to be approximately equivalent to that produced in natural freshwater marshes, although the below-ground component was somewhat higher. We found no relationship of biomass to soil organic matter, even though site conditions were wet enough to retard plant decomposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号