首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1909篇
  免费   477篇
  国内免费   1179篇
  2024年   1篇
  2023年   96篇
  2022年   92篇
  2021年   132篇
  2020年   231篇
  2019年   222篇
  2018年   195篇
  2017年   203篇
  2016年   204篇
  2015年   175篇
  2014年   160篇
  2013年   205篇
  2012年   143篇
  2011年   133篇
  2010年   122篇
  2009年   135篇
  2008年   127篇
  2007年   138篇
  2006年   120篇
  2005年   108篇
  2004年   80篇
  2003年   96篇
  2002年   64篇
  2001年   59篇
  2000年   71篇
  1999年   42篇
  1998年   34篇
  1997年   27篇
  1996年   17篇
  1995年   17篇
  1994年   16篇
  1993年   6篇
  1992年   7篇
  1991年   7篇
  1990年   12篇
  1989年   12篇
  1988年   10篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   11篇
  1981年   4篇
  1980年   2篇
  1976年   2篇
  1958年   2篇
排序方式: 共有3565条查询结果,搜索用时 31 毫秒
51.
Soil organic carbon (SOC), the largest terrestrial carbon pool, plays a significant role in soil‐related ecosystem services such as climate regulation, soil fertility and agricultural production. However, its fate under land use change is difficult to predict. A major issue is that SOC comprised of numerous organic compounds with potentially distinct and poorly understood turnover properties. Here we use spatiotemporal measurements of the particulate (POC), mineral‐associated (MOC) and charred SOC (COC) fractions from 176 trials involving changes in land use to assess their underlying controls. We find that the initial pool sizes of each of the three fractions consistently and dominantly control their temporal dynamics after changes in land use (i.e. the baseline effects). The effects of climate, soil physicochemical properties and plant residues, however, are fraction‐ and time‐dependent. Climate and soil properties show similar importance for controlling the dynamics of MOC and COC, while plant residue inputs (in term of their quantity and quality) are much less important. For POC, plant residues and management practices (e.g. the frequency of pasture in crop‐pasture rotation systems) are substantially more important, overriding the influence of climate. These results demonstrate the pivotal role of measuring SOC composition and considering fraction‐specific stabilization and destabilization processes for effective SOC management and reliable SOC predictions.  相似文献   
52.
The Global Carbon Project (GCP) has published global carbon budgets annually since 2007 (Canadell et al. [2007], Proc Natl Acad Sci USA, 104, 18866–18870; Raupach et al. [2007], Proc Natl Acad Sci USA, 104, 10288–10293). There are many scientists involved, but the terrestrial fluxes that appear in the budgets are not well understood by ecologists and biogeochemists outside of that community. The purpose of this paper is to make the terrestrial fluxes of carbon in those budgets more accessible to a broader community. The GCP budget is composed of annual perturbations from pre‐industrial conditions, driven by addition of carbon to the system from combustion of fossil fuels and by transfers of carbon from land to the atmosphere as a result of land use. The budget includes a term for each of the major fluxes of carbon (fossil fuels, oceans, land) as well as the rate of carbon accumulation in the atmosphere. Land is represented by two terms: one resulting from direct anthropogenic effects (Land Use, Land‐Use Change, and Forestry or land management) and one resulting from indirect anthropogenic (e.g., CO2, climate change) and natural effects. Each of these two net terrestrial fluxes of carbon, in turn, is composed of opposing gross emissions and removals (e.g., deforestation and forest regrowth). Although the GCP budgets have focused on the two net terrestrial fluxes, they have paid little attention to the gross components, which are important for a number of reasons, including understanding the potential for land management to remove CO2 from the atmosphere and understanding the processes responsible for the sink for carbon on land. In contrast to the net fluxes of carbon, which are constrained by the global carbon budget, the gross fluxes are largely unconstrained, suggesting that there is more uncertainty than commonly believed about how terrestrial carbon emissions will respond to future fossil fuel emissions and a changing climate.  相似文献   
53.
京津冀地区新型城镇化对土地生态效率影响的实证分析   总被引:1,自引:0,他引:1  
近年来, 城市化进程的不断推进对城市土地利用及生态环境产生了极大影响。选取城镇化发展最为迅速与典型的京津冀地区作为研究区域, 采用超效率DEA模型及Malmquist效率指数, 从经济学角度分析2006-2015年土地生态效率的时空演变, 随后, 基于人口、富裕和技术(STRIPAT)模型, 构建新型城镇化发展水平的综合指标评价体系, 分析新型城镇化对土地生态效率的影响。研究结果表明: 京津冀地区城镇化发展水平与土地生态效率之间存在显著的正相关关系, 即城镇化水平的不断提升对土地生态效率的提高具有积极作用, 各城市土地生态效率在新型城镇化发展背景下存在明显的空间差异, 此外, 土地利用与管理技术水平的提高、环境政策的改变等均会对土地生态效率的提升产生积极影响。这项研究旨在为提高城市土地管理水平, 推动城市可持续发展提供决策支持。  相似文献   
54.
Longleaf pine savannas are highly threatened, fire‐maintained ecosystems unique to the southeastern United States. Fire suppression and conversion to agriculture have strongly affected this ecosystem, altering overstory canopies, understory plant communities, and animal populations. Tree thinning to reinstate open canopies can benefit understory plant diversity, but effects on animal communities are less well understood. Moreover, agricultural land‐use legacies can have long‐lasting impacts on plant communities, but their effects on animal communities either alone or through interactions with restoration are unclear. Resolving these impacts is important due to the conservation potential of fire‐suppressed and post‐agricultural longleaf savannas. We evaluated how historical agricultural land use and canopy thinning affect the diversity and abundance of wild bees in longleaf pine savannas. We employed a replicated, large‐scale factorial block experiment in South Carolina, where canopy thinning was applied to longleaf pine savannas that were either post‐agricultural or remnant (no agricultural history). Bees were sampled using elevated bee bowls. In the second growing season after restoration, thinned plots supported a greater bee abundance and bee community richness. Additionally, restored plots had altered wild bee community composition when compared to unthinned plots, indicating that reduction of canopy cover by the thinning treatment best predicted wild bee diversity and composition. Conversely, we found little evidence for differences between sites with or without historical agricultural land use. Some abundant Lasioglossum species were the most sensitive to habitat changes. Our results highlight how restoration practices that reduce canopy cover in fire‐suppressed savannas can have rapid benefits for wild bee communities.  相似文献   
55.
Large‐scale restoration efforts are underway globally to mitigate the impact of decades of land degradation by returning functional and biodiverse ecosystems. Revegetation is a heavily relied upon restoration intervention, and one that is expected to result in associated biodiversity returns. However, the outcome of such restoration interventions rarely considers recovery to the soil microbiome, a mega‐diverse and functionally important ecosystem component. Here we examine the archaeal component of the soil microbiome and track community change after a decade of eucalypt woodland restoration in southern Australia. We employed DNA metabarcoding to show that archaeal community composition, richness, and diversity shifted significantly, and towards a restored state 10 years after the restoration intervention. Changes in soil pH and nitrate associated with changes to the archaeal community, potentially relating to the pH responsive properties and close relationship with the nitrogen cycle of some archaea. Our study helps shed light on archaeal community dynamics, as no other study has used DNA metabarcoding to study archaeal responses across a restoration chronosequence. Our results provide great promise for the development of molecular monitoring of the soil microbiome as a future restoration monitoring tool.  相似文献   
56.
Grasslands in southeastern South America have been extensively converted to various land uses such as agriculture, threatening regional biodiversity. Active restoration has been viewed as a management alternative for recovery of degraded areas worldwide, although most studies are conducted in forests and none has evaluated the effect of active restoration of grasslands in southeastern South America. From 2015 through 2017 we monitored a federally owned tract of grassland from the beginning of the active‐restoration process. We compared the bird community in this active‐restoration area (AR) with a reference area (NG) in Pampa grasslands in southern Brazil. We sampled birds by point counts and surveyed vegetation structure in plots. Over the 3 years of active restoration, bird species richness and abundance were higher in AR (30 species, 171 individuals) than NG (22 species, 154 individuals). The species composition also differed between the two habitats. Grassland bird species were present in both AR and NG. The vegetation structure differed between AR and NG in five attributes: height, short and tall grasses, herbs, and shrubs. Since it has been found that active restoration is useful in promoting species diversity, we encourage studies of the use of long‐term restoration efforts. Our study, even on a local scale, showed a rapid recovery of the bird community in the active‐restoration compared to native grassland, and suggests the potential for recovery of the degraded grasslands of the Brazilian Pampa biome.  相似文献   
57.
The restoration community continues to discuss what constitutes good environmental stewardship. One area of tension is the extent to which the well‐being of wild animals should inform restoration efforts. We discuss three ways that the perspective of wild animal welfare can augment restoration ecology: strengthening people's relationship with nature, reinforcing biotic integrity, and reducing mechanistic uncertainty. The animal welfare movement elevates sentient animals as stakeholders and explores how environmental context directly impacts the well‐being of individuals. Viewing wild animals through this lens may encourage people to think and act with empathy and altruism. Second, we incorporate animal welfare into the concept of biotic integrity for ecological and ethical reasons. Restoring ecosystem processes may enhance animal welfare, and vice versa. Alternatively, there may be a trade‐off between these factors, requiring local decision‐makers to prioritize between restoring ecosystem function and promoting individuals' well‐being. We conclude by discussing how welfare can impact population recovery, thereby adding insights about mechanisms underpinning restoration objectives. Ultimately, restoration ecologists and proponents of wild animal welfare could enjoy a productive union.  相似文献   
58.
In the Loess Plateau region, soil erosion is a serious problem. Vegetation restoration is an effective approach to control soil erosion and improve ecosystems. The soil seed bank generally plays an important role in vegetation restoration after disturbance. Thus, we reviewed soil seed bank studies to reveal the soil seed bank characteristics and its role in vegetation restoration in three vegetation types (forest, forest‐steppe, and steppe). We selected 38 seed bank studies and analyzed several seed bank characteristics, such as seed density, species composition, and the relationship between seed size and seed bank. We also assessed the role of the soil seed bank in vegetation restoration. The soil seed bank density ranged from 2,331 ± 1,993 to 6,985 ± 4,047 seeds/m2 among the different vegetation types. In the soil seed bank, perennial herbs and grasses accounted for 51.5% of the total species. Native species that were dominant or common in the standing vegetation usually had relatively high seed bank densities. Moreover, species with smaller seeds generally had higher soil seed bank densities. The present study indicates that the soil seed bank plays a significant role in spontaneous vegetation restoration, especially during the early successional stages in abandoned slope farmlands and grazing‐excluded grasslands. However, species with large seeds or transient soil seed banks should be reintroduced through seeding to accelerate target species restoration. More studies on soil seed banks need to be conducted to comprehensively reveal their characteristics.  相似文献   
59.
Anthropogenic conversion of natural to agricultural land reduces aboveground biodiversity. Yet, the overall consequences of land‐use changes on belowground biodiversity at large scales remain insufficiently explored. Furthermore, the effects of conversion on different organism groups are usually determined at the taxonomic level, while an integrated investigation that includes functional and phylogenetic levels is rare and absent for belowground organisms. Here, we studied the Earth's most abundant metazoa—nematodes—to examine the effects of conversion from natural to agricultural habitats on soil biodiversity across a large spatial scale. To this aim, we investigated the diversity and composition of nematode communities at the taxonomic, functional, and phylogenetic level in 16 assemblage pairs (32 sites in total with 16 in each habitat type) in mainland China. While the overall alpha and beta diversity did not differ between natural and agricultural systems, all three alpha diversity facets decreased with latitude in natural habitats. Both alpha and beta diversity levels were driven by climatic differences in natural habitats, while none of the diversity levels changed in agricultural systems. This indicates that land conversion affects soil biodiversity in a geographically dependent manner and that agriculture could erase climatic constraints on soil biodiversity at such a scale. Additionally, the functional composition of nematode communities was more dissimilar in agricultural than in natural habitats, while the phylogenetic composition was more similar, indicating that changes among different biodiversity facets are asynchronous. Our study deepens the understanding of land‐use effects on soil nematode diversity across large spatial scales. Moreover, the detected asynchrony of taxonomic, functional, and phylogenetic diversity highlights the necessity to monitor multiple facets of soil biodiversity in ecological studies such as those investigating environmental changes.  相似文献   
60.
The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall‐tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m?2 year?1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2‐eq m?2 year?1, thus providing a climate‐cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear‐cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall‐tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号