全文获取类型
收费全文 | 1040篇 |
免费 | 44篇 |
国内免费 | 20篇 |
专业分类
1104篇 |
出版年
2023年 | 6篇 |
2022年 | 7篇 |
2021年 | 23篇 |
2020年 | 15篇 |
2019年 | 16篇 |
2018年 | 11篇 |
2017年 | 16篇 |
2016年 | 22篇 |
2015年 | 39篇 |
2014年 | 30篇 |
2013年 | 49篇 |
2012年 | 34篇 |
2011年 | 23篇 |
2010年 | 25篇 |
2009年 | 27篇 |
2008年 | 38篇 |
2007年 | 35篇 |
2006年 | 44篇 |
2005年 | 38篇 |
2004年 | 40篇 |
2003年 | 37篇 |
2002年 | 30篇 |
2001年 | 37篇 |
2000年 | 41篇 |
1999年 | 21篇 |
1998年 | 27篇 |
1997年 | 30篇 |
1996年 | 39篇 |
1995年 | 25篇 |
1994年 | 20篇 |
1993年 | 44篇 |
1992年 | 26篇 |
1991年 | 19篇 |
1990年 | 15篇 |
1989年 | 13篇 |
1988年 | 10篇 |
1987年 | 14篇 |
1986年 | 12篇 |
1985年 | 16篇 |
1984年 | 13篇 |
1983年 | 10篇 |
1982年 | 6篇 |
1981年 | 14篇 |
1980年 | 11篇 |
1979年 | 11篇 |
1978年 | 6篇 |
1977年 | 4篇 |
1976年 | 5篇 |
1975年 | 3篇 |
1973年 | 3篇 |
排序方式: 共有1104条查询结果,搜索用时 15 毫秒
61.
Josh Hough Simone Immler Spencer C. H. Barrett Sarah P. Otto 《Evolution; international journal of organic evolution》2013,67(7):1915-1925
Frequency‐dependent selection should drive dioecious populations toward a 1:1 sex ratio, but biased sex ratios are widespread, especially among plants with sex chromosomes. Here, we develop population genetic models to investigate the relationships between evolutionarily stable sex ratios, haploid selection, and deleterious mutation load. We confirm that when haploid selection acts only on the relative fitness of X‐ and Y‐bearing pollen and the sex ratio is controlled by the maternal genotype, seed sex ratios evolve toward 1:1. When we also consider haploid selection acting on deleterious mutations, however, we find that biased sex ratios can be stably maintained, reflecting a balance between the advantages of purging deleterious mutations via haploid selection, and the disadvantages of haploid selection on the sex ratio. Our results provide a plausible evolutionary explanation for biased sex ratios in dioecious plants, given the extensive gene expression that occurs across plant genomes at the haploid stage. 相似文献
62.
Isak S. Pretorius 《Critical reviews in biotechnology》2017,37(1):112-136
Over the past 15 years, the seismic shifts caused by the convergence of biomolecular, chemical, physical, mathematical, and computational sciences alongside cutting-edge developments in information technology and engineering have erupted into a new field of scientific endeavor dubbed Synthetic Biology. Recent rapid advances in high-throughput DNA sequencing and DNA synthesis techniques are enabling the design and construction of new biological parts (genes), devices (gene networks) and modules (biosynthetic pathways), and the redesign of biological systems (cells and organisms) for useful purposes. In 2014, the budding yeast Saccharomyces cerevisiae became the first eukaryotic cell to be equipped with a fully functional synthetic chromosome. This was achieved following the synthesis of the first viral (poliovirus in 2002 and bacteriophage Phi-X174 in 2003) and bacterial (Mycoplasma genitalium in 2008 and Mycoplasma mycoides in 2010) genomes, and less than two decades after revealing the full genome sequence of a laboratory (S288c in 1996) and wine (AWRI1631 in 2008) yeast strain. A large international project – the Synthetic Yeast Genome (Sc2.0) Project – is now underway to synthesize all 16 chromosomes (~12?Mb carrying ~6000 genes) of the sequenced S288c laboratory strain by 2018. If successful, S. cerevisiae will become the first eukaryote to cross the horizon of in silico design of complex cells through de novo synthesis, reshuffling, and editing of genomes. In the meantime, yeasts are being used as cell factories for the semi-synthetic production of high-value compounds, such as the potent antimalarial artemisinin, and food ingredients, such as resveratrol, vanillin, stevia, nootkatone, and saffron. As a continuum of previously genetically engineered industrially important yeast strains, precision genome engineering is bound to also impact the study and development of wine yeast strains supercharged with synthetic DNA. The first taste of what the future holds is the de novo production of the raspberry ketone aroma compound, 4-[4-hydroxyphenyl]butan-2-one, in a wine yeast strain (AWRI1631), which was recently achieved via metabolic pathway engineering and synthetic enzyme fusion. A peek over the horizon is revealing that the future of “Wine Yeast 2.0” is already here. Therefore, this article seeks to help prepare the wine industry – an industry rich in history and tradition on the one hand, and innovation on the other – for the inevitable intersection of the ancient art practiced by winemakers and the inventive science of pioneering “synthetic genomicists”. It would be prudent to proactively engage all stakeholders – researchers, industry practitioners, policymakers, regulators, commentators, and consumers – in a meaningful dialog about the potential challenges and opportunities emanating from Synthetic Biology. To capitalize on the new vistas of synthetic yeast genomics, this paper presents wine yeast research in a fresh context, raises important questions and proposes new directions. 相似文献
63.
This study introduces the construction of the first intraspacific genetic linkage map of the A-genome diploid cotton with newly developed simple sequence repeat (SSR) markers using 189 F2 plants derived from the cross of two Asiatic parents were detected using 6 092 pairs of SSR primers. Two-hundred and sixty-eight pairs of SSR pdmers with better polymorphisms were picked out to analyze the F2 population. In total, 320 polymorphic bands were generated and used to construct a linkage map with JoinMap3.0. Two-hundred and sixty-seven loci, Including three phenotypic traits were mapped at a logarithms of odds ratio (LOD) ≥ 3.0 on 13 linkage groups. The total length of the map was 2 508.71 cM, and the average distance between adjacent markers was 9.40 cM. Chromosome assignments were according to the association of linkages with our backbone tetraploid specific map using the 89 similar SSR loci. Comparisons among the 13 suites of orthologous linkage groups revealed that the A-genome chromosomes are largely collinear with the At and Dt sub-genome chromosomes. Chromosomes associated with inversions suggested that allopolyploidization was accompanied by homologous chromosomal rearrangement. The inter-chromosomal duplicated loci supply molecular evidence that the A-genome diploid Asiatic cotton is paleopolyploid. 相似文献
64.
Chromosomes with active nucleolus organizer regions (NORs) were visualized in root tip metaphases ofPhaseolus coccineus using the silver staining technique. A mean number of 5.5 Ag-NORs per cell was observed in 54 cells from eight plants. In the endopolyploid nuclei of the suspensor the silver technique did not demonstrate the reported specificity for nucleolus organizer activity, because there was usually pale staining of nucleoli and preferential staining of heterochromatic regions in the polytene chromosomes including pericentromeric material, telomeres and NORs. The mean number of NORs per nucleolus as detected by this method was 5.8 (28 nucleoli analysed). Using a modified preparation technique, giant chromosomes stained pale, but nucleoli of suspensor cells displayed darkly silver staining internal domains, each of which originating from a nucleolus organizer.—Giemsa C-banding of endopolyploid suspensor nuclei revealed C-positive nucleolus organizers with darkly staining intranucleolar fibrils. The latter were frequently involved in inter-NOR associations. In 34 nucleoli analysed, the mean number of Giemsa C-positive NORs per nucleolus was 6.0.Dedicated to Professor Dr.Lothar Geitler on the occasion of his 80th birthday. 相似文献
65.
A wide range of sex chromosome mechanisms, including simple and multiple chromosome systems is characteristic of fishes. The Leporinus genus represent a good model to study sex chromosome mechanisms, because an unambiguous ZZ/ZW sex chromosome system was previously described for seven species, while the remaining studied species of the genus do not show differentiated sex chromosomes. The occurrence of sex chromosomes in Leporinus trifasciatus and Leporinus sp2 from the Araguaia river, Amazon basin, Brazil, was here investigated. ZZ/ZW sex chromosomes were detected for both species. The Z and W chromosome morphology of L. trifasciatus is the same as described for other species of the genus Leporinus. However, the Z and W chromosomes of L. sp2 were quite different in their morphology and banding pattern suggesting that the ZW system of this species have originated independently from the ZW system previously described for other Leporinus. 相似文献
66.
Biolistic transfer of large DNA fragments to tobacco cells using YACs retrofitted for plant transformation 总被引:1,自引:0,他引:1
Mullen Jeffrey Adam Gerhard Blowers Alan Earle Elizabeth 《Molecular breeding : new strategies in plant improvement》1998,4(5):449-457
To determine whether large DNA molecules could be transferred and integrated intact into the genome of plant cells, we bombarded tobacco suspension cells with yeast DNA containing artificial chromosomes (YACs) having sizes of 80, 150, 210, or 550 kilobases (kb). Plant selectable markers were retrofitted on both YAC arms so that recovery of each arm in transgenic calli could be monitored. Stably transformed calli resistant to kanamycin (300 mg/L) were recovered for each size of YAC tested. Two of 12 kanamycin-resistant transformants for the 80 kb YAC and 8 of 29 kanamycin-resistant transformants for the 150 kb YAC also contained a functional hygromycin gene derived from the opposite YAC arm. Southern analyses using probes that spanned the entire 55 kb insert region of the 80 kb YAC confirmed that one of the two double-resistant lines had integrated a fully intact single copy of the YAC DNA while the other contained a major portion of the insert. Transgenic lines that contained only one selectable marker gene from the 80 kb YAC incorporated relatively small portions of the YAC insert DNA distal to the selectable marker. Our data suggest genomic DNA cloned in artificial chromosomes up to 150 kb in size have a reasonable likelihood of being transferred by biolistic methods and integrated intact into the genome of plant cells. Biolistic transfer of YAC DNA may accelerate the isolation of agronomically useful plant genes using map-based cloning strategies. 相似文献
67.
Meiotic pachytene chromosome-based fluorescence in situ hybridization (FISH) mapping is one of the most important tools in plant molecular cytogenetic research. Here we report a simple technique that allows stretching of pachytene chromosomes of maize to up to at least 20 times their original size. A modified Carnoy's II fixative (6:1:3 ethanol:chloroform:acetic acid) was used in the procedure, and proved to be key for super-stretching of pachytene chromosomes. We demonstrate that super-stretched pachytene chromosomes provide unprecedented resolution for chromosome-based FISH mapping. DNA probes separated by as little as 50 kb can be resolved on super-stretched chromosomes. A combination of FISH with immunofluorescent detection of 5-methyl cytosine on super-stretched pachytene chromosomes provides a powerful tool to reveal DNA methylation of specific chromosomal domains, especially those associated with highly repetitive DNA sequences. 相似文献
68.
The understanding of sex determination in general, but in particular in mammals, has been a subject of scientific speculation for a long time. It has been shown that in many vertebrate and invertebrate species, the sex of an individual is determined by the individual's chromosomal constitution. Initial studies of classical genetic searching for sex-transforming mutations and the scrupulous analyses of modified phenotypes have shed light on the mechanism(s) of sex-determination. They paved the road to successful studies at molecular level. After a brief review on sex determination in chosen model species, the “Drosophila system” is presented to exemplify a possible general principle for sex determinism. 相似文献
69.
Michail Rovatsos Jasna Vuki? Petros Lymberakis Luká? Kratochvíl 《Proceedings. Biological sciences / The Royal Society》2015,282(1821)
Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. 相似文献
70.
C K Pyne 《Biology of the cell / under the auspices of the European Cell Biology Organization》2001,93(5):309-320
The structural basis of mitotic condensation of chromosomes is one of the problems of cell biology yet to be elucidated. A variety of approaches have been used to study this problem and a large number of hypotheses have been proposed to explain the different levels of compaction of chromatin. Xenopus egg extracts, now widely used to study various aspects of cell biology, provide a valuable tool to study mitotic condensation of chromosomes. No detailed study has however yet been reported on the submicroscopic organization of condensed chromosomes in vitro in egg extracts. We present here the results of our electron microscopic studies on the organization of condensed chromosomes in vitro, using demembranated sperm nuclei and mitotic (CSF-arrested) extracts of Xenopus laevis eggs, clarified by high speed centrifugation. Upon introduction of sperm nuclei in egg extracts, the nuclei swell and the chromatin undergoes a rapid decondensation; at this stage the chromatin is formed of 10 nm fibrils. After longer incubation, the chromatin condenses, and by 2 h chromosomal structures can be visualized by staining with DAPI or Hoechst 33258. Our results on the organization of chromosomes in different stages of condensation are discussed in relation to the different hypotheses proposed to explain the process of mitotic condensation of chromosomes. Finally, this study demonstrates the feasibility of high-resolution analysis of the process of chromosome condensation. 相似文献