首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   18篇
  国内免费   16篇
  2024年   1篇
  2023年   10篇
  2022年   10篇
  2021年   14篇
  2020年   12篇
  2019年   36篇
  2018年   42篇
  2017年   14篇
  2016年   13篇
  2015年   11篇
  2014年   88篇
  2013年   74篇
  2012年   42篇
  2011年   61篇
  2010年   56篇
  2009年   43篇
  2008年   47篇
  2007年   48篇
  2006年   43篇
  2005年   26篇
  2004年   16篇
  2003年   12篇
  2002年   13篇
  2001年   9篇
  2000年   8篇
  1999年   7篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1977年   2篇
  1976年   2篇
排序方式: 共有791条查询结果,搜索用时 281 毫秒
21.
P‐selectin glycoprotein ligand‐1 (PSGL‐1) is an adhesive molecule that is known to be a ligand for P‐selectin. An anti‐adhesive property of PSGL‐1 has not been previously reported. In this study, we show that PSGL‐1 expression is anti‐adhesive for adherent cells and we have elucidated the underlying mechanism. Overexpression of PSGL‐1 induced cell rounding and floating in HEK293T cells. Similar phenomena were demonstrated in other adherent cell lines with overexpression of PSGL‐1. PSGL‐1 overexpression inhibits access of antibodies to cell surface molecules such as integrins, HLA and CD25. Cells transfected with PSGL‐1 deletion mutants that lack a large part of the extracellular domain and chimeric construct expressing extracellular CD86 and intracellular PSGL‐1 only showed rounded morphology, but there are no floating cells. These results indicated that PSGL‐1 causes steric hindrance due to the extended structure of its extracellular domain that is highly O‐glycosylated, but intracellular domain also has some effect on cell rounding. This study implies that PSGL‐1 has Janus‐faced functions, being both adhesive and anti‐adhesive. J. Cell. Biochem. 114: 1271–1285, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
22.
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine.  相似文献   
23.
Acquisition of metastatic potential is accompanied by changes in cell surface N-glycosylation. One of the best-studied changes is increased expression of N-acetylglucosaminyltransferase V enzyme (GnT-V) and its products, β1,6-branched N-linked oligosaccharides, observed in the tumorigenesis of many cancers. In this study we demonstrate that during the transition from the vertical growth phase (VGP) (WM793 cell line) to the metastatic stage (WM1205Lu line), β1,6 glycosylation of melanoma cell surface proteins increases as a consequence of elevated expression of the GnT-V-encoding Mgat-5 gene. Treatment with swainsonine led to reduced cell motility on fibronectin in both cell lines; the effect was stronger in metastatic cells, probably due to the higher content of GlcNAc β1,6-branched glycans on the main fibronectin receptors – integrins α5β1 and α3β1. Our results show that GlcNAc β1,6 N-glycosylation of cell surface receptors, which increases with the aggressiveness of melanoma cells, is an important factor influencing melanoma cell migration.  相似文献   
24.
This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the freezing rate.  相似文献   
25.
Despite improved treatment options, glioblastoma multiforme (GBM) remains the most aggressive brain tumour with the shortest post-diagnostic survival. Arsenite (As2O3) is already being used in the treatment of acute promyelocytic leukaemia (APL), yet its effects on GBM have not been evaluated in detail. In U87MG cell monolayers, we have previously shown that arsenite cytotoxicity significantly increases upon transient inhibition of lysosomal protease Cathepsin L (CatL). As multicellular spheroids more closely represent in vivo tumours, we aimed to evaluate the impact of permanent CatL silencing on arsenite treatment in U87MG spheroids. CatL was stably silenced using shRNA expression plasmid packed lentiviruses. By using metabolic- and cell viability assays, we demonstrated that long-term CatL silencing significantly increased arsenite cytotoxicity in U87MG spheroids. Silenced CatL also increased arsenite-mediated apoptosis in spheroids via elevated p53 expression, Bax/Bcl2 ratio and caspase 3/7 activity, though with lower efficacy than in monolayers. Arsenite cytotoxicity was enhanced by lower CatL activity, since similar cytotoxicity increase was also observed using the novel CatL inhibitor AT094. The results have significant translational impact, since stable CatL silencing would enable the application of lower systemic doses of arsenite to achieve the desired cytotoxic effects on GBMs in vivo.  相似文献   
26.
Gastroesophageal reflux disease has been implicated in the pathogenesis of adenocarcinoma of the oesophagus. The same applies to laryngopharyngeal reflux (LPR) and squamous cell cancer of the head and neck, but so far, this link has not been proven. The impact of low pH and bile acids has not been studied extensively in cells other than oesophageal cancer cell lines and tissue. The aims of this study were to investigate the pathogenic potential of reflux and its single components on the mucosa of the upper respiratory tract. We measured DNA stability in human miniorgan cultures (MOCs) and primary epithelial cell cultures (EpCs) in response to reflux by the alkaline comet assay. As matrix metalloproteinases (MMPs) are involved in extracellular matrix remodelling processes and may contribute to cancer progression, we studied the expression of MMP1, -9, and -14 in MOCs, EpC, UM-SCC-22B, and FADUDD. DNA strand breaks (DNA-SBs) increased significantly at low pH and after incubation with human or artificial gastric juice. Single incubation with glycochenodeoxycholic acid also showed a significant increase in DNA-SBs. In epithelial cell cultures, human gastric juice increased the number of DNA-SBs at pH 4.5 and 5.5. Artificial gastric juice significantly up regulated the gene expression of MMP9. Western blot analysis confirmed the results of gene expression analysis, but the up regulation of MMP1, -9, and -14 was donor-specific. Reflux has the ability to promote genomic instability and may contribute to micro environmental changes suitable for the initiation of malignancy. Further functional gene analysis may elucidate the role of laryngopharyngeal reflux in the development of head neck squamous cell carcinoma (HNSCC).  相似文献   
27.
In our previous study, miR-126 was identified as one of the leading miRNAs that is downregulated during activation of hepatic stellate cells (HSCs). However, the roles and related mechanisms of miR-126 in HSCs are not understood. In this study, we compared expression of miR-126 during HSC activation both in vitro and in vivo. We also applied RNA interference to analyze the role and mechanism of miR-126 in the activation of HSCs. Restoring HSCs with Lv-miR-126 resulted in decreased proliferation, accumulation of extracellular matrix components, and cell contraction, while also negatively regulating the vascular endothelial growth factor (VEGF) signal transduction pathways by partially targeted VEGF-A. Thus, we postulate that miR-126 may be a biological marker for the activation of HSCs, and useful for reducing intrahepatic vascular resistance and improving the sinusoidal microcirculation in chronic liver diseases.  相似文献   
28.
Focal adhesion kinase (FAK) consists of an N-terminal band 4.1; ezrin, radixin, moesin (FERM) domain; tyrosine kinase domain; and C-terminal FA targeting domain. Here we show that ectopically expressed FERM is largely located in the cytosolic fraction under quiescent conditions. We further found that this ectopically expressed FERM domain aggravates endothelial cell apoptosis triggered by 100 μM resveratrol, whereas FERM had no effect on apoptosis induced by TNF-α. We determined that resveratrol at low doses (<20 μM) promotes phosphorylation (S1177) of eNOS via an AMPK-dependent pathway. The presence of the FERM domain blocked this resveratrol-stimulated eNOS phosphorylation and NO production. Thus, the pro-apoptotic activity of cytosolic FERM domain is at least partially mediated by down-regulation of NO, a critical cell survival factor. Consistently, we found that the apoptosis induced by cytosolic FERM in the presence of resveratrol was reversed by an NO donor, SNAP. In conclusion, FERM located in the cytosolic fraction plays a pivotal role in aggravating cell apoptosis through diminishing NO production.  相似文献   
29.
在全球石油资源不断减少和温室气体不断积累的情况下,急需发展可再生燃料能源及各种生物化工原料和产品。基于该目的,能够生产高能量密度液体生物燃料和高附加值化工品的微生物脂肪酸合成系统备受关注。首先介绍了大肠杆菌脂肪酸代谢系统的组成,然后详细总结了通过改造脂肪酸代谢途径生产脂肪酸以及脂肪酸衍生物的最新研究进展,并介绍了利用体外重建体系来研究脂肪酸合成途径对该系统进行深入挖掘,以及根据得到的信息指导体内脂肪酸途径的改造来释放脂肪酸合成系统的潜能。  相似文献   
30.
的:研究Fibulin-5蛋白在三阴性乳腺癌(TNBC)m胞转移中的作用。方法:以三阴性乳腺癌细胞系(MDA-MB-231)分化而来的三株高中低不同转移能力的子细胞系为模型,高表达和抑制Fibulin.5在其中的表达,研究其对细胞侵袭能力的影响。结果:三阴性乳腺癌细胞内本底的Fibulin.5与其转移能力正相关,另外上调和抑制Fibulin-5可以改变其原有的侵袭能力。结论:Fibulin-5在三阴性乳腺癌细胞转移中发挥重要作用,抑制Fibulin-5可以降低三阴性乳腺癌细胞的侵袭能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号