首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   19篇
  国内免费   11篇
  2023年   3篇
  2022年   8篇
  2021年   6篇
  2020年   2篇
  2019年   8篇
  2018年   7篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   13篇
  2013年   17篇
  2012年   6篇
  2011年   14篇
  2010年   9篇
  2009年   12篇
  2008年   14篇
  2007年   5篇
  2006年   10篇
  2005年   13篇
  2004年   10篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   8篇
  1997年   5篇
  1996年   7篇
  1995年   10篇
  1994年   9篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   7篇
  1987年   4篇
  1986年   2篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1974年   3篇
  1973年   1篇
  1972年   2篇
排序方式: 共有319条查询结果,搜索用时 730 毫秒
131.
Summary Highly contractile skeletal myotubes differentiated in tissue culture are normally difficult to maintain on collagen-coated tissue culture dishes for extended periods because of their propensity to detach as a sheet of cells from their substratum. This detachment results in the release of mechanical tension in the growing cell “sheet” and, consequently, loss of cellular protein. We developed a simple method of culturing high density contractile primary avian myotubes embedded in a collagen gel matrix (collagel) attached to either a stainless steel mesh or nylon support structure. With this system the cells are maintained in a highly contractile state for extended periods in vitro under tension. Structural integrity of the myotubes can be maintained for up to 10 d in basal medium without serum or embryo extract. Total cellular protein and myosin heavy chain accumulation in the cells can be maintained for weeks at levels which are two to three times those found in timematched controls that are under little tension. Morphologically, the myotubes are well differentiated with structural characteristics of neonatal myofibers. This new collagel culture system should prove useful in the analysis of in vitro gene expression during myotube to myofiber differentiation and its regulation by various environmental factors such as medium growth factors, innervation, and mechanical activity. This work was supported by grant AM 36266 from the National Institutes of Health, Bethesda, MD, and grant NAG2-414 from the National Aeronautics and Space Administration, Washington, D.C. Parts of this work have appeared in abstract form, In Vitro 23:24a; 1987.  相似文献   
132.
133.
Membrane-depleted nuclei from Ehrlich ascites tumor (EAT) cells isolated at low ionic strength in the presence of EDTA exhibit highly decondensed chromatin fibers and a loss of morphologically identifiable nucleoli. Treatment of these nuclei with nucleases and 2 M NaCl followed by low-speed centrifugation permitted the facile isolation of the nuclear lamina layer. Under the same conditions, but after heat-shock treatment of the living cells, the chromatin appears in a more condensed state, the nucleoli are well-defined, and the nuclear lamina layer was destabilized in concert with the appearance of an internal nuclear matrix and nucleolar skeleton. Furthermore, we also found both an increase in the protein mass as well as the appearance of a relatively large number of new proteins in this fraction, which are phosphorylated. The major proteins of the nuclear lamina, the lamins, and the residual vimentin remained insoluble. These heat-shock-induced changes were also accompanied by a dephosphorylation of lamins A and C but not of lamin B.  相似文献   
134.
The intestinal epithelium is equipped with sensing receptor mechanisms that interact with luminal microorganisms and nutrients to regulate barrier function and gut immune responses, thereby maintaining intestinal homeostasis. Herein, we clarify the role of the extracellular calcium-sensing receptor (CaSR) using intestinal epithelium-specific Casr−/− mice. Epithelial CaSR deficiency diminished intestinal barrier function, altered microbiota composition, and skewed immune responses towards proinflammatory. Consequently, Casr−/− mice were significantly more prone to chemically induced intestinal inflammation resulting in colitis. Accordingly, CaSR represents a potential therapeutic target for autoinflammatory disorders, including inflammatory bowel diseases.  相似文献   
135.
The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins.  相似文献   
136.
Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family member CCN2 or connective tissue growth factor (CTGF), a potent inducer of the expression of BL components, is upregulated early in diabetes. Diabetic mice lacking one functional CTGF allele (CTGF+/−) do not show this BL thickening. As early events in DR may be interrelated, we hypothesized that CTGF plays a role in the pathological changes of retinal capillaries other than BL thickening. We studied the effects of long-term (6-8 months) streptozotocin-induced diabetes on retinal capillary BL thickness, numbers of pericytes and the development of acellular capillaries in wild type and CTGF+/− mice. Our results show that an absence of BL thickening of retinal capillaries in long-term diabetic CTGF+/− mice is associated with reduced pericyte dropout and reduced formation of acellular capillaries. We conclude that CTGF is involved in structural retinal vascular changes in diabetic rodents. Inhibition of CTGF in the eye may therefore be protective against the development of DR.  相似文献   
137.
Transforming growth factor (TGF)-β, a pleiotropic cytokine released by both immune and non-immune cells in the gut, exerts an important tolerogenic action by promoting regulatory T cell differentiation. TGF-β also enhances enterocyte migration and regulates extracellular matrix turnover, thereby playing a crucial role in tissue remodeling in the gut. In this review we describe the mechanisms by which abnormal TGF-β signaling impairs intestinal immune tolerance and tissue repair, thus predisposing to the onset of immune-mediated bowel disorders, such as inflammatory bowel disease and celiac disease. Additionally, we will discuss potential therapeutic strategies aiming at restoring physiologic TGF-β signaling in chronic intestinal diseases.  相似文献   
138.
Disturbances are primary forces creating spatial heterogeneity in ecosystems, and inducing changes on biological communities, abiotic characteristics and ecological processes. Here we focus on the effects of fire disturbance in the decomposition process at subtropical Campos grasslands in South Brazil, where burns are traditionally used to reduce shrub encroachment, and improve forage quality. We experimentally investigated how burns and the changes they produce in grassland habitat conditions affect soil fauna detritivory and surface leaf‐litter decaying patterns over one year. Previously to fire, we found significant correlation of litter decay with plant evenness and detritivory rates in non‐disturbed grasslands. One month after fire grassland patches presented reduced soil fauna densities and surface feeding activity possible because of the mortality caused directly by heating, and/or due to harsh microenvironmental filters to fauna colonization and permanency (e.g. decreased humidity). At 6–7 months after fire however these features did not differ any more from the paired unburned plots. On the other hand, canopy openness accelerated the decaying of leaf‐litter in burned patches by allowing increased action of abiotic factors as solar radiation potentially triggering photodegradation. These effects seemed to last less than one year. Overall, our results bring insights regarding drivers of soil ecological processes at local scales in subtropical grasslands, and suggest that detritivory and litter decay processes are sensitive to fire, but resilient following grassland recovering.  相似文献   
139.
The blood–brain barrier (BBB) is highly restrictive of the transport of substances between blood and the central nervous system. Brain pericytes are one of the important cellular constituents of the BBB and are multifunctional, polymorphic cells that lie within the microvessel basal lamina. The present study aimed to evaluate the role of pericytes in the mediation of BBB disruption using a lipopolysaccharide (LPS)-induced model of septic encephalopathy in mice. ICR mice were injected intraperitoneally with LPS or saline and were sacrificed at 1, 3, 6, and 24 h after injection. Sodium fluorescein accumulated with time in the hippocampus after LPS injection; this hyperpermeability was supported by detecting the extravasation of fibrinogen. Microglia were activated and the number of microglia increased with time after LPS injection. LPS-treated mice exhibited a broken basal lamina and pericyte detachment from the basal lamina at 6–24 h after LPS injection. The disorganization in the pericyte and basal lamina unit was well correlated with increased microglial activation and increased cerebrovascular permeability in LPS-treated mice. These findings suggest that pericyte detachment and microglial activation may be involved in the mediation of BBB disruption due to inflammatory responses in the damaged brain.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号