首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   556篇
  免费   20篇
  国内免费   16篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   6篇
  2019年   8篇
  2018年   11篇
  2017年   7篇
  2016年   10篇
  2015年   9篇
  2014年   9篇
  2013年   14篇
  2012年   14篇
  2011年   18篇
  2010年   10篇
  2009年   29篇
  2008年   23篇
  2007年   24篇
  2006年   16篇
  2005年   21篇
  2004年   11篇
  2003年   19篇
  2002年   25篇
  2001年   17篇
  2000年   9篇
  1999年   15篇
  1998年   18篇
  1997年   20篇
  1996年   17篇
  1995年   14篇
  1994年   21篇
  1993年   15篇
  1992年   17篇
  1991年   15篇
  1990年   12篇
  1989年   10篇
  1988年   13篇
  1987年   9篇
  1986年   2篇
  1985年   7篇
  1984年   15篇
  1983年   5篇
  1982年   10篇
  1981年   2篇
  1980年   5篇
  1979年   7篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1973年   5篇
排序方式: 共有592条查询结果,搜索用时 31 毫秒
271.
We used isotope dilution MS to measure the stoichiometry of light‐harvesting complex I (LHCI) proteins with the photosystem I (PSI) core complex in the green alga Chlamydomonas reinhardtii. Proteotypic peptides served as quantitative markers for each of the nine gene products (Lhca1–9) and for PSI subunits. The quantitative data revealed that the LHCI antenna of C. reinhardtii contains about 7.5 ± 1.4 subunits. It further demonstrated that the thylakoid LHCI population is heterogeneously composed and that several lhca gene products are not present in 1:1 stoichiometries with PSI. When compared with vascular plants, LHCI of C. reinhardtii possesses a lower proportion of proteins potentially contributing to far‐red fluorescence emission. In general, the strategy presented is universally applicable for exploring subunit stoichiometries within the C. reinhardtii proteome.  相似文献   
272.
We report the use of IC‐OSu ethyl‐Cy3 and ethyl‐Cy5 N‐hydroxysuccinimide ester (NHS) cyanine dyes, which have similar chemical properties as the CyDye? DIGE fluor minimal dyes for pre‐electrophoresis labelling. Multiple sample analyses in different laboratories indicate that the use of IC‐OSu ethyl‐Cy3 and ethyl‐Cy5 NHS ester cyanine dyes produces equivalent results to those obtained with DIGE CyDyes, and allows sample multiplexing and accurate quantitation for differential proteome analysis.  相似文献   
273.
Co-existence of both mating types A1 and A2 within the EU1 lineage of Phytophthora ramorum has only been observed in Belgium, which begs the question whether sexual reproduction is occurring. A collection of 411 Belgian P. ramorum isolates was established during a 7-year survey. Our main objectives were genetic characterization of this population to test for sexual reproduction, determination of population structure, evolution and spread, and evaluation of the effectiveness and impact of control measures. Novel, polymorphic simple sequence repeat (SSR) markers were developed after screening 149 candidate loci. Eighty isolates of P. ramorum, broadly representing the Belgian population, were analyzed using four previously described and three newly identified polymorphic microsatellite loci as well as amplified fragment length polymorphisms. SSR analysis was most informative and was used to screen the entire Belgian population. Thirty multilocus genotypes were identified, but 68% of the isolates belonged to the main genotype EU1MG1. Although accumulated mutation events were detected, the overall level of genetic diversity within the Belgian isolates of P. ramorum appears to be limited, indicating a relatively recent clonal expansion. Based on our SSR analysis there is no evidence of sexual recombination in the Belgian population of P. ramorum . Metalaxyl use decreased the genetic diversity of P. ramorum until 2005, when the majority of the isolates had become resistant. Most genotypes were site-specific and despite systematic removal of symptomatic and neighbouring plants, some genotypes were detected over a period of several years at a single site, sometimes discontinuously, indicating (latent) survival of the pathogen at those sites.  相似文献   
274.
The effect of defoliation on the deposition of carbon (C) and nitrogen (N) and the contribution of reserves and current assimilates to the use of C and N in expanding leaf tissue of severely defoliated perennial ryegrass (Lolium perenne L.) was assessed with a new material element approach. This included 13C/12C-and 15N/14N-steady-state labelling of all post-defoliation assimilated C and N, analysis of tissue expansion and displacement in the growth zone, and investigation of the spatial and temporal changes in substrate and label incorporation in the expanding elements prior to and after defoliation. The relationship between elemental expansion and C deposition was not altered by defoliation, but total C deposition in the growth zone was decreased due to decreased expansion of tissue at advanced developmental stages and a shortening of the growth zone. The N deposition per unit expansion was increased following defoliation, suggesting that N supply did not limit expansion. Transition from reserve- to current assimilation-derived growth was rapid (<1 d for carbohydrates and approximately 2 d for N), more rapid than suggested by label incorporation in growth zone biomass. The N deposition was highest near the leaf base, where cell division rates are greatest, whereas carbohydrate deposition was highest near the location of most active cell expansion. The contribution of reserve-derived relative to current assimilation-derived carbohydrates (or N) to deposition was very similar for elements at different stages of expansion  相似文献   
275.
Mixotrophic microorganisms are able to use organic carbon as well as inorganic carbon sources and thus, play an essential role in the biogeochemical carbon cycle. In aquatic ecosystems, the alteration of carbon dioxide (CO2) fixation by toxic metals such as cadmium – classified as a priority pollutant – could contribute to the unbalance of the carbon cycle. In consequence, the investigation of cadmium impact on carbon assimilation in mixotrophic microorganisms is of high interest. We exposed the mixotrophic microalga Chlamydomonas reinhardtii to cadmium in a growth medium containing both CO2 and labelled 13C-[1,2] acetate as carbon sources. We showed that the accumulation of cadmium in the pyrenoid, where it was predominantly bound to sulphur ligands, impaired CO2 fixation to the benefit of acetate assimilation. Transmission electron microscopy (TEM)/X-ray energy dispersive spectroscopy (X-EDS) and micro X-ray fluorescence (μXRF)/micro X-ray absorption near-edge structure (μXANES) at Cd LIII-edge indicated the localization and the speciation of cadmium in the cellular structure. In addition, nanoscale secondary ion mass spectrometry (NanoSIMS) analysis of the 13C/12C ratio in pyrenoid and starch granules revealed the origin of carbon sources. The fraction of carbon in starch originating from CO2 decreased from 73 to 39% during cadmium stress. For the first time, the complementary use of high-resolution elemental and isotopic imaging techniques allowed relating the impact of cadmium at the subcellular level with carbon assimilation in a mixotrophic microalga.  相似文献   
276.
在过去几十年中, 氮(N)稳定同位素技术的发展提高了人们对于陆地生态系统氮循环的认识。该文回顾了氮稳定同位素技术在研究生态系统氮循环中的历史, 综述了最近十多年来氮稳定同位素技术在陆地生态系统氮循环研究中的典型案例, 包括利用氮同位素自然丰度鉴定植物氮来源、指示生态系统氮状态和量化过程速率, 利用15N标记技术示踪氮的去向和再分布等。该文同时指出这些应用中存在的问题, 以及在陆地生态系统上氮稳定同位素技术今后研究的重点发展方向。  相似文献   
277.
The upside-down jellyfish Cassiopea engages in symbiosis with photosynthetic microalgae that facilitate uptake and recycling of inorganic nutrients. By contrast to most other symbiotic cnidarians, algal endosymbionts in Cassiopea are not restricted to the gastroderm but are found in amoebocyte cells within the mesoglea. While symbiont-bearing amoebocytes are highly abundant, their role in nutrient uptake and cycling in Cassiopea remains unknown. By combining isotopic labelling experiments with correlated scanning electron microscopy, and Nano-scale secondary ion mass spectrometry (NanoSIMS) imaging, we quantified the anabolic assimilation of inorganic carbon and nitrogen at the subcellular level in juvenile Cassiopea medusae bell tissue. Amoebocytes were clustered near the sub-umbrella epidermis and facilitated efficient assimilation of inorganic nutrients. Photosynthetically fixed carbon was efficiently translocated between endosymbionts, amoebocytes and host epidermis at rates similar to or exceeding those observed in corals. The Cassiopea holobionts efficiently assimilated ammonium, while no nitrate assimilation was detected, possibly reflecting adaptation to highly dynamic environmental conditions of their natural habitat. The motile amoebocytes allow Cassiopea medusae to distribute their endosymbiont population to optimize access to light and nutrients, and transport nutrition between tissue areas. Amoebocytes thus play a vital role for the assimilation and translocation of nutrients in Cassiopea, providing an interesting new model for studies of metabolic interactions in photosymbiotic marine organisms.  相似文献   
278.
Abstract

The interaction of yeast alcohol dehydrogenase (ADH) with the reactive chlorotriazine dye Vilmafix Blue A-R (VBAR) was studied. VBAR was purified to homogeneity on lipophilic Sephadex LH-20 and characterised by reverse phase HPLC and analytical TLC. Incubation of ADH with purified VBAR at pH 8.0 and 37°C resulted in a time-dependent inactivation of the enzyme. The observed rate of enzyme inactivation (kobs) exhibited a non-linear dependence on VBAR concentration from 22 to 106nmol, with a maximum rate of inactivation (k3) of 0.134min?1 and kD of 141.7 μM. The inhibition was irreversible and activity could not be recovered by gel-filtration chromatography. The inactivation of ADH by VBAR was competitively inhibited by the nucleotides NADH and NAD+. These results suggest that VBAR acts as an affinity label at the nucleotide binding site of yeast ADH.  相似文献   
279.
The response of a deep-water benthic microbial community to organic matter (OM) enrichment was studied in the unexplored region of the SW Cretan margin (E. Mediterranean). A food pulse of 0.5 g C m?2 was simulated by adding 13C-labelled diatoms to sediment cores retrieved from 1079 m depth. The diatom addition resulted in a significant increase in the sediment community oxygen consumption (SCOC). After 6 days, ~50 mg C m?2 of the added material was processed by the microbial community. The major carbon sink was respiration, which accounted for ~96% of the total processed material. The carbon uptake rate (12 mg C m?2 d?1) was considerably lower than previously published values in the E. Mediterranean at similar depths. The microbial community in our study site is distinct, as revealed by the unusually high presence of branched phospholipid fatty acids (PLFA). Previous studies have revealed that the slope under investigation may act as a conduit of OM from the shallow shelf to the deep basins, resulting in the prevalence of relatively refractory OM at mid-slope depths. We postulate that sedimentary processes affect the amount of bioavailable sedimentary OM and consequently the structure and physiological state of bacterial community in our study site. The distinct microbial community composition at our station compared to more stable adjacent slopes could explain the limited response of the microbial community to the addition of labile OM. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental file.  相似文献   
280.
Calcium/calmodulin-dependent protein kinase II (CaMKII) interprets information conveyed by the amplitude and frequency of calcium transients by a controlled transition from an autoinhibited basal intermediate to an autonomously active phosphorylated intermediate (De Koninck and Schulman, 1998). We used spin labelling and electron paramagnetic resonance spectroscopy to elucidate the structural and dynamic bases of autoinhibition and activation of the kinase domain of CaMKII. In contrast to existing models, we find that autoinhibition involves a conformeric equilibrium of the regulatory domain, modulating substrate and nucleotide access. Binding of calmodulin to the regulatory domain induces conformational changes that release the catalytic cleft, activating the kinase and exposing an otherwise inaccessible phosphorylation site, threonine 286. Autophosphorylation at Thr286 further disrupts the interactions between the catalytic and regulatory domains, enhancing the interaction with calmodulin, but maintains the regulatory domain in a dynamic unstructured conformation following dissociation of calmodulin, sustaining activation. These findings support a mechanistic model of the CaMKII holoenzyme grounded in a dynamic understanding of autoregulation that is consistent with a wealth of biochemical and functional data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号