首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   852篇
  免费   74篇
  国内免费   62篇
  2023年   27篇
  2022年   35篇
  2021年   26篇
  2020年   71篇
  2019年   64篇
  2018年   42篇
  2017年   30篇
  2016年   39篇
  2015年   43篇
  2014年   60篇
  2013年   83篇
  2012年   51篇
  2011年   48篇
  2010年   58篇
  2009年   46篇
  2008年   39篇
  2007年   41篇
  2006年   27篇
  2005年   32篇
  2004年   21篇
  2003年   18篇
  2002年   11篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   9篇
  1994年   8篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1987年   3篇
  1985年   1篇
  1984年   5篇
  1983年   5篇
  1979年   1篇
  1978年   1篇
排序方式: 共有988条查询结果,搜索用时 15 毫秒
91.
A simple, rapid and accurate mid-infrared (MIR) spectroscopic method for simultaneously determining the product (ethanol) content and the nutrient (sugar) content in plant-cell culture media was developed using a Fourier transform infrared (FT-IR) spectrometer equipped with an attenuated total reflectance (ATR) accessory. We assessed the potential of this method by comparing it to a high-performance liquid chromatography (HPLC) method, and using the developed method to measure the ethanol and sugar contents simultaneously in liquid culture media with rice and tabacum cell suspensions, respectively. The experimental results suggest that the sugar consumption and ethanol production behaviors of the plant cell suspensions can be non-destructively and simultaneously monitored using the developed method. Furthermore, the spectroscopic method provided in this study could be developed into a technique that could be used to analyze the overall kinetics of the metabolism of the plant cell suspensions.  相似文献   
92.
Chain hydrophobicity values have been used in prediction of alternate structure attainment by a polypeptide. Nonlinear signal analysis on the hydrophobicity values gives important clues about the propensities of particular stretches of a protein to form local or nonlocal contacts. These contacts determine the folding behavior of a polypeptide and helps in predicting the final structure that can be attained. A nonlinear signal analysis called the recurrent quantification analysis has been carried out using the hydrophobicity values on a wide range of proteins obtained from human, plant, and fungal sources. Here, we show that such an analysis gives us an easy handle in determining sequences within the proteins that may be important in beta-sheet formation leading to amyloidosis.  相似文献   
93.
Immunopurification is one of the most effective chromatography steps to purify the hepatitis B surface antigen, which have successfully been used as an active pharmaceutical ingredient of hepatitis B vaccines. Plant-derived antibodies could be an appropriated ligand for such purposes because plants are the most cost-effective production systems and have the additional advantage that plant viruses cannot infect humans. In this work, a polyclonal antibody alkaline phosphatase-linked immunoassay was standardized and validated to quantify a plant-derived antibody directed against the HBsAg. The validation of an immunoassay to quantify plantibodies is a relatively complex task due to the complexity of the plant extract, the low level of expression of this molecule, and the potential interferences of endogenous peroxidases contributed by plants. These results allow estimating the plant-derived antibody concentration up to 3.81 ng/mL with high specificity, precision, and repeatability. The working range of the standard curve was between 3.81 and 60 ng/mL, and the intra- and inter-variation coefficients were between 10% and 20% in a production process's sample dependent way. This enzyme-linked immunosorbent assay is considered valuable to improve the design of the purification process and also to obtain a better estimation of the antibody expression level and process's recovery.  相似文献   
94.
95.
The development of a novel method for absolute quantification of proteins based on isotope-coded affinity tagging using ICAT reagents is described. The method exploits synthetic peptide standards to determine protein content at the femtomole level in biological samples. The approach is generally applicable to any subset of proteins, but is particularly appropriate for quantitative analysis of multiple, closely related isoforms, and for hydrophobic proteins that are poorly represented in 2-D gels. Relative and absolute quantification techniques are applied to an important group of microsomal metabolic enzymes, the cytochromes P450 (P450), which are critical in determining the disposition, safety and efficacy of drugs in man. Measurement of the P450 induction profile in response to chemicals is a fundamental aspect of drug safety evaluation and is currently achieved by low-throughput methods employing poorly discriminatory antibodies or substrates. Tagging technology is shown to supersede conventional methods for P450 profiling in terms of discriminatory power and throughput, exemplified by the simultaneous detection of distinct induction profiles for cyp2c subfamily members in response to phenobarbitone: cyp2c29 expression, but not cyp2c40 or cyp2c50, was induced threefold by treatment. This technology should abbreviate the drug development pathway, and provide a widely applicable, rapid means of quantifying proteins.  相似文献   
96.
In vertebrates the collapsin response mediator proteins (CRMPs) are encoded by five highly related genes. CRMPs are cytosolic phosphoproteins abundantly expressed in developing and mature mammalian brains. CRMPs are best understood as effectors of Semaphorin 3A signaling regulating growth cone collapse in migratory neurons. Phosphorylation in the carboxyl‐terminal regulatory domain of CRMPs by several serine/threonine kinases has been described. These phoshorylation events appear to function, at least in part, to disrupt the interaction of CRMPs with tubulin heterodimers. In a large‐scale phosphoproteomic analysis of murine brain, we recently identified a number of in vivo tyrosine phosphorylation sites on CRMP isoforms. Using biochemical approaches and quantitative mass spectrometry we demonstrate that one of these sites, CRMP1 tyrosine 504 (Y504), is a primary target of the Src family of tyrosine kinases (SFKs), specifically Fyn. Y504 is adjacent to CDK5 and GSK‐3β sites that regulate the interaction of CRMPs with tubulin. Although Y504 is highly conserved among vertebrate CRMP1 orthologs, a residue corresponding to Y504 is absent in CRMP isoforms 2–5. This suggests an isoform‐specific regulatory role for CRMP1 Y504 phosphorylation and may help explain the observation that CRMP1‐deficient mice exhibit neuronal migration defects not compensated for by CRMPs 2–5. J. Cell. Biochem. 111: 20–28, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
97.
Large‐scale DNA molecular studies require reliable and efficient tools for DNA extractions. However, for some plant species and brown algae, isolation of high‐quality DNA is difficult. We developed a novel method for isolating high‐quality DNA from the polysaccharide‐rich and polyphenol‐rich brown algae based on a commercial kit and protocol (Qiagen) by optimizing the lysis step and including a chloroform/isoamyl alcohol supplementary purification step. DNAs from 24 brown algal species extracted using the original and the modified Qiagen protocol were compared for yield, quality, and effectiveness in PCR amplification. There was no significant difference in the yields between protocols. However, a statistically significant increase in DNA purity was obtained with the modified protocol, for which the A260/A280 and A260/A230 absorbance ratios averaged 1.66 ± 0.05 and 1.31 ± 0.01, respectively, compared to 1.37 ± 0.04 and 0.52 ± 0.04 with the original protocol. DNAs extracted by the modified procedure were more successfully amplified by PCR (nuclear, mitochondrial, and chloroplastic regions) than DNAs extracted using the original commercial kit and protocol. Importantly, the modified protocol can be applied in a high‐throughput (e.g., 96‐well plate) format, allowing a higher efficiency for downstream molecular analysis. In addition, improved DNA quality could increase its stability for long‐term storage.  相似文献   
98.
99.
In this study, a competitive PCR was developed to estimate the quantity of bifidobacteria in human faecal samples using two 16S rRNA gene Bifidobacterium genus-specific primers, Bif164f and Bif662r. A PCR-temporal temperature gradient gel electrophoresis (TTGE) with the same primers also allowed us to describe the Bifidobacterium species present in these faecal samples. The PCR product obtained from the competitor had 467 bp, and was 47 bp shorter than the PCR products obtained from Bifidobacterium strains. The number of bifidobacterial cells was linear from 10 to 10(8) cells per PCR assay. Taking into account the dilutions of the extracted DNA, the linear range was over 8 x 10(5) bifidobacteria g(-1) of faeces. Reproducibility was assessed from 10 independent DNA extractions from the same stool and the coefficient of variation was 0.5%. When the competitive PCR was compared with the culture method, a similar count of seven out of nine Bifidobacterium pure cultures were obtained, or had a difference inferior or equal to 1 log(10). In faecal samples, the enumeration of Bifidobacterium genus in most cases gave higher results with competitive PCR than with culture on selective Columbia-Beerens agar pH 5 (P < 0.05). In conclusion, this competitive PCR allows a rapid, highly specific and reproducible quantification of Bifidobacterium genus in faecal samples. TTGE fragments co-migrating with B. longum CIP64.63 fragment were found in 10 out of 11 faecal samples. Bifidobacterium adolescentis and B. bifidum were detected in five out of 11 subjects. Thus, cPCR and PCR-TTGE can be associated in order to characterize human faecal bifidobacteria.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号