首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   57篇
  国内免费   1篇
  2024年   4篇
  2023年   9篇
  2022年   21篇
  2021年   8篇
  2020年   21篇
  2019年   28篇
  2018年   24篇
  2017年   25篇
  2016年   24篇
  2015年   12篇
  2014年   29篇
  2013年   39篇
  2012年   3篇
  2011年   16篇
  2010年   1篇
  2009年   6篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
排序方式: 共有304条查询结果,搜索用时 46 毫秒
11.
The human spinal segment is an inherently complex structure, a combination of flexible and semi-rigid articulating elements stabilised by seven principal ligaments. An understanding of how mechanical loading is shared among these passive elements of the segment is required to estimate tissue failure stresses. A 3D rigid body model of the complete lumbar spine has been developed to facilitate the prediction of load sharing across the passive elements. In contrast to previous multibody models, this model includes a non-linear, six degrees of freedom intervertebral disc, facet bony articulations and all spinal ligaments. Predictions of segmental kinematics and facet joint forces, in response to pure moment loading (flexion–extension), were compared to published in vitro data. On inclusion of detailed representation of the disc and facets, the multibody model fully captures the non-linear flexibility response of the spinal segment, i.e. coupled motions and a mobile instantaneous centre of rotation. Predicted facet joint forces corresponded well with reported values. For the loading case considered, the model predicted that the ligaments are the main stabilising elements within the physiological motion range; however, the disc resists a greater proportion of the applied load as the spine is fully flexed. In extension, the facets and capsular ligaments provide the principal resistance. Overall patterns of load distribution to the spinal ligaments are in agreement with previous predictions; however, the current model highlights the important role of the intraspinous ligament in flexion and the potentially high risk of failure. Several important refinements to the multibody modelling of the passive elements of the spine have been described, and such an enhanced passive model can be easily integrated into a full musculoskeletal model for the prediction of spinal loading for a variety of daily activities.  相似文献   
12.
This work is concerned with the lubrication analysis of artificial knee joints, which plays an increasing significant role in clinical performance and longevity of components. Time-dependent elastohydrodynamic lubrication analysis for normal total knee replacement is carried out under the cyclic variation in both load and speed representative of normal walking. An equivalent ellipsoid-on-plane model is adopted to represent an actual artificial knee. A full numerical method is developed to simultaneously solve the Reynolds and elasticity equations using the multigrid technique. The elastic deformation is based on the constrained column model. Results show that, under the combined effect of entraining and squeeze-film actions throughout the walking cycle, the predicted central film thickness tends to decrease in the stance phase but keeps a relatively larger value at the swing phase. Furthermore, the geometry of knee joint implant is verified to play an important role under its lubrication condition, and the length of time period is a key point to influence the lubrication performance of joint components.  相似文献   
13.
The design, manufacture and validation of a new free standing staircase for motion analysis measurements are described in this paper. The errors in vertical force measurements introduced when the stairs interface with a force plate (FP) are less than 0.6%. The centre of pressure error introduced is less than 0.7 mm compared to the error from the FP. The challenges of introducing stair gait into a clinical trial with a limited number of FPs and time limitations for assessment sessions are addressed by introducing this cost effective solution.

The staircase was used in a study to measure non-pathological knee function of 10 subjects performing stair ascent and descent. The resulting knee kinematics and knee joint moments are in agreement with previous studies. The kinematic and joint moment profiles provide a normative range, which will be useful in future studies for identifying alterations in joint function associated with pathology and intervention.  相似文献   
14.
Fluoroscopic image technique, using either a single image or dual images, has been widely applied to measure in vivo human knee joint kinematics. However, few studies have compared the advantages of using single and dual fluoroscopic images. Furthermore, due to the size limitation of the image intensifiers, it is possible that only a portion of the knee joint could be captured by the fluoroscopy during dynamic knee joint motion. In this paper, we presented a systematic evaluation of an automatic 2D–3D image matching method in reproducing spatial knee joint positions using either single or dual fluoroscopic image techniques. The data indicated that for the femur and tibia, their spatial positions could be determined with an accuracy and precision less than 0.2 mm in translation and less than 0.4° in orientation when dual fluoroscopic images were used. Using single fluoroscopic images, the method could produce satisfactory accuracy in joint positions in the imaging plane (in average up to 0.5 mm in translation and 1.3° in rotation), but large variations along the out-plane direction (in average up to 4.0 mm in translation and 2.2° in rotation). The precision of using single fluoroscopic images to determine the actual knee positions was worse than its accuracy obtained. The data also indicated that when using dual fluoroscopic image technique, if the knee joint outlines in one image were incomplete by 80%, the algorithm could still reproduce the joint positions with high precisions.  相似文献   
15.
Tibial bone defect is a critical problem for revision knee arthroplasty. Instead of using metallic spacer or cement, biodegradable scaffolds could be an alternative solution. A numerical model of a revision knee arthroplasty was thus developed to estimate the mechanical resistance of the scaffold in this demanding situation. The tibia, scaffold, and prosthesis were represented by simplified parameterised geometries. The maximal gait cycle force was applied asymmetrically to simulate a critical loading. Several parameters were analysed: 1) inter-individual variability, 2) cortical bone stiffness, 3) cortical bone thickness, 4) prosthesis fixation quality, and 5) scaffold thickness. The calculated scaffold strain was compared to its experimental ultimate strain. Among the tested parameters, failure was only predicted with scaffold thickness below 5 mm. This study suggests that biodegradable bone scaffolds could be used to fill bone defects in revision knee arthroplasty, but scaffold size seems to be the limiting factor.  相似文献   
16.
The treatment of osteochondral articular defects has been challenging physicians for many years. The better understanding of interactions of articular cartilage and subchondral bone in recent years led to increased attention to restoration of the entire osteochondral unit. In comparison to chondral lesions the regeneration of osteochondral defects is much more complex and a far greater surgical and therapeutic challenge. The damaged tissue does not only include the superficial cartilage layer but also the subchondral bone. For deep, osteochondral damage, as it occurs for example with osteochondrosis dissecans, the full thickness of the defect needs to be replaced to restore the joint surface 1. Eligible therapeutic procedures have to consider these two different tissues with their different intrinsic healing potential 2. In the last decades, several surgical treatment options have emerged and have already been clinically established 3-6.Autologous or allogeneic osteochondral transplants consist of articular cartilage and subchondral bone and allow the replacement of the entire osteochondral unit. The defects are filled with cylindrical osteochondral grafts that aim to provide a congruent hyaline cartilage covered surface 3,7,8. Disadvantages are the limited amount of available grafts, donor site morbidity (for autologous transplants) and the incongruence of the surface; thereby the application of this method is especially limited for large defects.New approaches in the field of tissue engineering opened up promising possibilities for regenerative osteochondral therapy. The implantation of autologous chondrocytes marked the first cell based biological approach for the treatment of full-thickness cartilage lesions and is now worldwide established with good clinical results even 10 to 20 years after implantation 9,10. However, to date, this technique is not suitable for the treatment of all types of lesions such as deep defects involving the subchondral bone 11.The sandwich-technique combines bone grafting with current approaches in Tissue Engineering 5,6. This combination seems to be able to overcome the limitations seen in osteochondral grafts alone. After autologous bone grafting to the subchondral defect area, a membrane seeded with autologous chondrocytes is sutured above and facilitates to match the topology of the graft with the injured site. Of course, the previous bone reconstruction needs additional surgical time and often even an additional surgery. Moreover, to date, long-term data is missing 12.Tissue Engineering without additional bone grafting aims to restore the complex structure and properties of native articular cartilage by chondrogenic and osteogenic potential of the transplanted cells. However, again, it is usually only the cartilage tissue that is more or less regenerated. Additional osteochondral damage needs a specific further treatment. In order to achieve a regeneration of the multilayered structure of osteochondral defects, three-dimensional tissue engineered products seeded with autologous/allogeneic cells might provide a good regeneration capacity 11.Beside autologous chondrocytes, mesenchymal stem cells (MSC) seem to be an attractive alternative for the development of a full-thickness cartilage tissue. In numerous preclinical in vitro and in vivo studies, mesenchymal stem cells have displayed excellent tissue regeneration potential 13,14. The important advantage of mesenchymal stem cells especially for the treatment of osteochondral defects is that they have the capacity to differentiate in osteocytes as well as chondrocytes. Therefore, they potentially allow a multilayered regeneration of the defect.In recent years, several scaffolds with osteochondral regenerative potential have therefore been developed and evaluated with promising preliminary results 1,15-18. Furthermore, fibrin glue as a cell carrier became one of the preferred techniques in experimental cartilage repair and has already successfully been used in several animal studies 19-21 and even first human trials 22.The following protocol will demonstrate an experimental technique for isolating mesenchymal stem cells from a rabbit''s bone marrow, for subsequent proliferation in cell culture and for preparing a standardized in vitro-model for fibrin-cell-clots. Finally, a technique for the implantation of pre-established fibrin-cell-clots into artificial osteochondral defects of the rabbit''s knee joint will be described.  相似文献   
17.
The study investigates the effects of the 11+ and HarmoKnee injury prevention programmes on knee strength in male soccer players. Under-21-year-old players (n=36) were divided equally into: the 11+, HarmoKnee and control groups. The programmes were performed for 24 sessions (20-25 min each). The hamstrings and quadriceps strength were measured bilaterally at 60°·s-1, 180°·s-1 and 300°·s-1. The concentric quadriceps peak torque (PT) of the 11+ increased by 27.7% at 300°·s-1 in the dominant leg (p<0.05). The concentric quadriceps PT of HarmoKnee increased by 36.6%, 36.2% and 28% in the dominant leg, and by 31.3%, 31.7% and 20.05% at 60°·s-1, 180°·s-1 and 300°·s-1 in the non-dominant leg respectively. In the 11+ group the concentric hamstring PT increased by 22%, 21.4% and 22.1% at 60°·s-1, 180°·s-1 and 300°·s-1, respectively in the dominant leg, and by 22.3%, and 15.7% at 60°·s-1 and 180°·s-1, in the non-dominant leg. In the HarmoKnee group the hamstrings in the dominant leg showed an increase in PT by 32.5%, 31.3% and 14.3% at 60°·s-1, 180°·s-1 and 300°·s-1, and in the non-dominant leg hamstrings PT increased by 21.1% and 19.3% at 60°·s-1 and 180°·s-1 respectively. The concentric hamstrings strength was significantly different between the 11+ and control groups in the dominant (p=0.01) and non-dominant legs (p=0.02). The HarmoKnee programme enhanced the concentric strength of quadriceps. The 11+ and HarmoKnee programmes are useful warm-up protocols for improving concentric hamstring strength in young professional male soccer players. The 11+ programme is more advantageous for its greater concentric hamstring strength improvement compared to the HarmoKnee programme.  相似文献   
18.
There are numerous studies concerning sexual dimorphism in body proportions, but only a few have investigated growth in the relative length of particular segments of the upper and lower limbs during adolescence. The aim of the study is an assessment of sex differences of longitudinal growth in the relative length of the forearm and knee height among adolescents. Sample involved 121 boys and 111 girls, participants of the Wroclaw Growth Study, examined annually between 8 and 18 years of age. Sexual dimorphism in six ratios: forearm length and knee height relatively to: trunk, height, and limb length were analyzed using a two‐way analysis of variance with repeated measurements. The sex and age relative to an estimate of maturity timing (3 years before, and after age class at peak height velocity [PHV]) were independent variables. All of the ratios showed significant sex differences in interaction with age relative to age at PHV. The relative length of the forearm, in boys, did not change significantly with the years relative to age at PHV, whereas in girls, was the lowest in the two first age classes and afterward significantly increased just 1 year before and during the adolescent growth spurt, remaining unchanged in further age classes. For relative knee height no clear pattern for sex differences was noticed. It is proposed that relatively longer forearms, particularly in relation to the trunk in girls, could have evolved as an adaptation to more efficient infant carrying and protection during breastfeeding.  相似文献   
19.
抗凝药物有助于预防全髋关节置换术和全膝关节置换术后深静脉血栓形成,临床上最常使用的传统抗凝药物如低分子肝素、华法林等可以起到很好的预防效果。目前有一类新的口服抗凝药物已经用于临床,为关节置换术后患者带来了一种更方便、安全和有效预防血栓的治疗选择。本篇综述主要针对传统抗凝药物低分子肝素及维生素K拮抗剂,直接凝血酶抑制剂达比加群,以及选择性Xa因子抑制剂利伐沙班和阿哌沙班,对迄今为止传统抗凝药物在全髋关节置换术和全膝关节置换术患者中的临床使用经验、优缺点、以及新型口服抗凝药物最新临床用药进展进行综述,为关节置换术后患者预防深静脉血栓提供用药参考。  相似文献   
20.
The relationship between obesity, weight gain and progression of knee osteoarthritis is well supported, suggesting that excessive joint loading may be a mechanism responsible for cartilage deterioration. Examining the influence of weight gain on joint compressive forces is difficult, as both muscles and ground reaction forces can have a significant impact on the forces experienced during gait. While previous studies have examined the relationship between body weight and knee forces, these studies have used models that were not validated using experimental data. Therefore, the objective of this study was to evaluate the relationship between changes in body weight and changes in knee joint contact forces for an individual's gait pattern using musculoskeletal modeling that is validated against known internal compressive forces. Optimal weighting constants were determined for three subjects to generate valid predictions of knee contact forces (KCFs) using in vivo data collection with instrumented total knee arthroplasty. A total of five simulations per walking trial were generated for each subject, from 80% to 120% body weight in 10% increments, resulting in 50 total simulations. The change in peak KCF with respect to body weight was found to be constant and subject-specific, predominantly determined by the peak force during the baseline condition at 100% body weight. This relationship may be further altered by any change in kinematics or body mass distribution that may occur as a result of a change in body weight or exercise program.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号