首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1703篇
  免费   158篇
  国内免费   98篇
  1959篇
  2024年   4篇
  2023年   30篇
  2022年   25篇
  2021年   38篇
  2020年   64篇
  2019年   59篇
  2018年   54篇
  2017年   61篇
  2016年   59篇
  2015年   43篇
  2014年   68篇
  2013年   124篇
  2012年   57篇
  2011年   76篇
  2010年   53篇
  2009年   104篇
  2008年   96篇
  2007年   100篇
  2006年   98篇
  2005年   77篇
  2004年   89篇
  2003年   70篇
  2002年   81篇
  2001年   55篇
  2000年   36篇
  1999年   32篇
  1998年   28篇
  1997年   29篇
  1996年   14篇
  1995年   25篇
  1994年   24篇
  1993年   24篇
  1992年   24篇
  1991年   17篇
  1990年   8篇
  1989年   18篇
  1988年   7篇
  1987年   13篇
  1986年   12篇
  1985年   14篇
  1984年   11篇
  1983年   6篇
  1982年   9篇
  1981年   7篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1959条查询结果,搜索用时 0 毫秒
111.
112.
Understanding, and ultimately predicting, how a 1-D protein chain reaches its native 3-D fold has been one of the most challenging problems during the last few decades. Data increasingly indicate that protein folding is a hierarchical process. Hence, the question arises as to whether we can use the hierarchical concept to reduce the practically intractable computational times. For such a scheme to work, the first step is to cut the protein sequence into fragments that form local minima on the polypeptide chain. The conformations of such fragments in solution are likely to be similar to those when the fragments are embedded in the native fold, although alternate conformations may be favored during the mutual stabilization in the combinatorial assembly process. Two elements are needed for such cutting: (1) a library of (clustered) fragments derived from known protein structures and (2) an assignment algorithm that selects optimal combinations to "cover" the protein sequence. The next two steps in hierarchical folding schemes, not addressed here, are the combinatorial assembly of the fragments and finally, optimization of the obtained conformations. Here, we address the first step in a hierarchical protein-folding scheme. The input is a target protein sequence and a library of fragments created by clustering building blocks that were generated by cutting all protein structures. The output is a set of cutout fragments. We briefly outline a graph theoretic algorithm that automatically assigns building blocks to the target sequence, and we describe a sample of the results we have obtained.  相似文献   
113.
Docking of the P1 duplex into the pre-folded core of the Tetrahymena group I ribozyme exemplifies the formation of tertiary interactions in the context of a complex, structured RNA. We have applied Phi-analysis to P1 docking, which compares the effects of modifications on the rate constant for docking (k(dock)) with the effects on the docking equilibrium (K(dock)). To accomplish this we used a single molecule fluorescence resonance energy transfer assay that allows direct determination of the rate constants for formation of thermodynamically favorable, as well as unfavorable, states. Modification of the eight groups of the P1 duplex that make tertiary interactions with the core and changes in solution conditions decrease K(dock) up to 500-fold, whereas k(dock) changes by 相似文献   
114.
Stature and the pattern of body proportions were investigated in a series of six time-successive Egyptian populations in order to investigate the biological effects on human growth of the development and intensification of agriculture, and the formation of state-level social organization. Univariate analyses of variance were performed to assess differences between the sexes and among various time periods. Significant differences were found both in stature and in raw long bone length measurements between the early semipastoral population and the later intensive agricultural population. The size differences were greater in males than in females. This disparity is suggested to be due to greater male response to poor nutrition in the earlier populations, and with the increasing development of social hierarchy, males were being provisioned preferentially over females. Little change in body shape was found through time, suggesting that all body segments were varying in size in response to environmental and social conditions. The change found in body plan is suggested to be the result of the later groups having a more tropical (Nilotic) form than the preceding populations.  相似文献   
115.
116.
The thermal stability of a cysteine-free alkaline protease (Alp) secreted by the eukaryote Aspergillus oryzae was improved both by the introduction of engineered twin disulfide bridges (Cys-69/Cys-101 and Cys-169/Cys-200), newly constructed as part of this study, and by the addition of calcium ions. We performed an extensive kinetic analysis of the increased thermal stability of the mutants as well as the role of calcium dependence. The thermodynamic activation parameters for irreversible thermal inactivation, the activation free energy (deltaG), the activation enthalpy (deltaH), and the activation entropy (deltaS) were determined from absolute reaction rate theory. The values of deltaH and deltaS were significantly and concomitantly increased as a result of introducing the twin disulfide bridges, for which the increase in the value of deltaH outweighed that of deltaS, resulting in significant increases in the value of deltaG. The enhancement of the thermal stability obtained by introducing the twin disulfide bridges is an example of the so-called low-temperature stabilization of enzymes. The stabilizing effect of calcium ions on wild-type Alp is similar to the results we obtained by introducing the engineered twin disulfide bridges.  相似文献   
117.
This study is concerned with the development and application of kinetic locking-on and auxiliary tactics for bioaffinity purification of NADP(+)-dependent dehydrogenases, specifically (1) the synthesis and characterization of highly substituted N(6)-linked immobilized NADP(+) derivatives using a rapid solid-phase modular approach; (2) the evaluation of the N(6)-linked immobilized NADP(+) derivatives for use with the kinetic locking-on strategy for bioaffinity purification of NADP(+)-dependent dehydrogenases: Model bioaffinity chromatographic studies with glutamate dehydrogenase from bovine liver (GDH with dual cofactor specificity, EC 1.4.1.3) and glutamate dehydrogenase from Candida utilis (GDH which is NADP(+)-specific, EC 1.4.1.4); (3) the selection of an effective "stripping ligand" for NADP(+)-dehydrogenase bioaffinity purifications using N(6)-linked immobilized NADP(+) derivatives in the locking-on mode; and (4) the application of the developed bioaffinity chromatographic system to the purification of C. utilis GDH from a crude cellular extract.Results confirm that the newly developed N(6)-linked immobilized NADP(+) derivatives are suitable for the one-step bioaffinity purification of NADP(+)-dependent GDH provided that they are used in the locking-on mode, steps are taken to inhibit alkaline phosphatase activity in crude cellular extracts, and 2',5'-ADP is used as the stripping ligand during chromatography. The general principles described here are supported by a specific sample enzyme purification; the purification of C. utilis GDH to electrophoretic homogeneity in a single bioaffinity chromatographic step (specific activity, 9.12 micromol/min/mg; purification factor, 83.7; yield 88%). The potential for development of analogous bioaffinity systems for other NADP(+)-dependent dehydrogenases is also discussed.  相似文献   
118.
The influence of rehydration conditions on the recovery of Escherichia coli K-12 was studied. The results showed that the osmotic pressure gradient of rehydration shock realized before plating greatly affected cell viability. When rehydration occurred quickly from an hyperosmotic level of 133 MPa in glycerol solution before slow rehydration by plating on an agar surface to reach initial osmotic pressure (1.4 MPa), bacterial viability was strongly related to the intensity of the hypo-osmotic gradient used. Rehydration to 107 MPa resulted in a survival ratio of 41%, whereas strong rehydration to 1.4 MPa resulted in only 0.7% survival. These studies also demonstrated the influence of the rehydration kinetic on cell recovery. An optimal rehydration rate of 0.136 MPa x s(-1) increased cell recovery by a factor of 40 when compared with the faster and slower rates of 131.6 MPa x s(-1) and 0.006 MPa x s(-1), respectively.  相似文献   
119.
A kinetic model for N-(1-deoxy-D-fructos-1-yl)-glycine (DFG) thermal decomposition was proposed. Two temperatures (100 and 120 degrees C) and two pHs (5.5 and 6.8) were studied. The measured responses were DFG, 3-deoxyosone, 1-deoxyosone, methylglyoxal, acetic acid, formic acid, glucose, fructose, mannose and melanoidins. For each system the model parameters, the rate constants, were estimated by non-linear regression, via multiresponse modelling. The determinant criterion was used as the statistical fit criterion. Model discrimination was performed by both chemical insight and statistical tests (Posterior Probability and Akaike criterion). Kinetic analysis showed that at lower pH DFG 1,2-enolization is favoured whereas with increasing pH 2,3-enolization becomes a more relevant degradation pathway. The lower amount observed of 1-DG is related with its high reactivity. It was shown that acetic acid, a main degradation product from DFG, was mainly formed through 1-DG degradation. Also from the estimated parameters 3-DG was found to be the main precursor in carbohydrate fragments formation, responsible for colour formation. Some indication was given that as the reaction proceeded other compounds besides DFG become reactants themselves with the formation among others of methylglyoxal. The multiresponse kinetic analysis was shown to be both helpful in deriving relevant kinetic parameters as well as in obtaining insight into the reaction mechanism.  相似文献   
120.
A kinetic framework is developed to describe enzyme activity and stability in two-phase liquid-liquid systems. In particular, the model is applied to the enzymatic production of benzaldehyde from mandelonitrile by Prunus amygdalus hydroxynitrile lyase (pa-Hnl) adsorbed at the diisopropyl ether (DIPE)/aqueous buffer interface (pH = 5.5). We quantitatively describe our previously obtained experimental kinetic results (Hickel et al., 1999; 2001), and we successfully account for the aqueous-phase enzyme concentration dependence of product formation rates and the observed reaction rates at early times. Multilayer growth explains the early time reversibility of enzyme adsorption at the DIPE/buffer interface observed by both enzyme-activity and dynamic-interfacial-tension washout experiments that replace the aqueous enzyme solution with a buffer solution. The postulated explanation for the unusual stability of pa-Hnl adsorbed at the DIPE/buffer interface is attributed to a two-layer adsorption mechanism. In the first layer, slow conformational change from the native state leads to irreversible attachment and partial loss of catalytic activity. In the second layer, pa-Hnl is reversibly adsorbed without loss in catalytic activity. The measured catalytic activity is the combined effect of the deactivation kinetics of the first layer and of the adsorption kinetics of each layer. For the specific case of pa-Hnl adsorbed at the DIPE/buffer interface, this combined effect is nearly constant for several hours resulting in no apparent loss of catalytic activity. Our proposed kinetic model can be extended to other interfacially active enzymes and other organic solvents. Finally, we indicate how interfacial-tension lag times provide a powerful tool for rational solvent selection and enzyme engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号