首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   11篇
  2024年   2篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   15篇
  2019年   20篇
  2018年   21篇
  2017年   29篇
  2016年   17篇
  2015年   15篇
  2014年   33篇
  2013年   43篇
  2012年   7篇
  2011年   9篇
  2010年   10篇
  2009年   12篇
  2008年   11篇
  2007年   8篇
  2006年   4篇
  2005年   13篇
  2004年   5篇
  2003年   7篇
  2002年   9篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
311.
This study describes a genera] set of equations for quasi-static analysis of three-dimensional multibody systems, with a particular emphasis on modeling of diarthrodial joints. The model includes articular contact, muscle forces, tendons and tendon pulleys, ligaments, and the wrapping of soft tissue structures around bone and cartilage surfaces. The general set of equations governing this problem are derived using a consistent notation for all types of links, which can be converted conveniently into efficient computer codes. The computational efficiency of the model is enhanced by the use of analytical Jacobians, particularly in the analysis of articular surface contact and wrapping of soft tissue structures around bone and cartilage surfaces. The usefulness of the multibody model is demonstrated by modeling the patellofemoral joint of six cadaver knees, using cadaver-specific data for the articular surface and bone geometries, as well as tendon and ligament insertions and muscle lines of actions. Good accuracy was observed when comparing the model patellar kinematic predictions to experimental data (mean ± stand, dev. error in translation: 0.63 ± 1.19 mm, 0.10 ± 0.71 mm, -0.29 ± 0.84 mm along medial, proximal, and anterior directions, respectively; in rotation: -1.41 ± 1.71°, 0.27 ±2.38°, -1.13 ± 1.83° in flexion, tilt and rotation, respectively). The accuracy which can be achieved with this type of model, and the computational efficiency of the algorithm employed in this study may serve in many applications such as computer-aided surgical planning, and real-time computer-assisted surgery in the operating room.  相似文献   
312.
The spatiotemporal parameters of leg movement in Scolopendra instantly changing the locomotion speed from V 1 to V 2V 1 are investigated. It is shown that (i) the principle of “in trail” leg placement is kept upon a change of speed; (ii) the continuity of the metachronal coordination is not disturbed; but (iii) for some time after changing speed the set of ipsilateral legs comprises (a) head-proximal legs creating a new trackway of steps with pace ℓ2, and (b) distal legs still using the old trackway with pace ℓ1. The two groups differ in kinematic parameters. Group (a) works in the stationary mode corresponding to speed V 2, while group (b) works in a transitory mode. Consecutively, with a metachronal wave propagating backwards along the body but immobile relative to the ground, more and more legs from group (b) switch to the new stationary mode.  相似文献   
313.
To understand the characteristics of the forehand smash of badminton player and improve their performance, this study took eight badminton players as the subject, obtained the kinematics data through the Qualisys infrared high-speed camera, obtained the electromyography (EMG) data through the ME-6000 surface EMG test system, and compared and analyzed their forehand smash action. The results showed that the greater the angle and speed of different joints in the forehand smash was, the greater the speed and strength of hitting the ball was; the discharge amount of biceps brachii (BB) was the smallest, followed by triceps brachii (TB), flexor carpi ulnaris (FCU), anterior deltoid (AD), posterior deltoid (FD), and pectoralis major (PM), and the activation order was PM → AD → FD → BB → TB → FCU; deltoid muscle and pectoralis major muscle were the main muscle groups in the exercise, which showed the characteristic that trunk muscles drove arm muscles.  相似文献   
314.
315.
316.
A highly accurate human hand kinematics model and identification are proposed. The model includes the five digits and the palm arc based on mapping function between surface landmarks and estimated joint centres of rotation. Model identification was experimentally performed using a motion tracking system. The evaluation of the marker position estimation error, which is on sub-millimetre level across all digits, underlines model quality and accuracy. Noticeably, with the development of this model, we were able to improve various modelling assumptions from literature and found a basic linear relationship between surface and skeleton rotational angles.  相似文献   
317.
318.
319.
320.
The movements of the humerus, the clavicle, and the scapula are not completely independent. The coupled pattern of movement of these bones is called the shoulder rhythm. To date, multiple studies have focused on providing regression-based 3-D shoulder rhythms, in which the orientations of the clavicle and the scapula are estimated by the orientation of the humerus. In this study, six existing regression-based shoulder rhythms were evaluated by an independent dataset in terms of their predictability. The datasets include the measured orientations of the humerus, the clavicle, and the scapula of 14 participants over 118 different upper arm postures. The predicted orientations of the clavicle and the scapula were derived from applying those regression-based shoulder rhythms to the humerus orientation. The results indicated that none of those regression-based shoulder rhythms provides consistently more accurate results than the others. For all the joint angles and all the shoulder rhythms, the RMSE are all greater than 5°. Among those shoulder rhythms, the scapula lateral/medial rotation has the strongest correlation between the predicted and the measured angles, while the other thoracoclavicular and thoracoscapular bone orientation angles only showed a weak to moderate correlation. Since the regression-based shoulder rhythm has been adopted for shoulder biomechanical models to estimate shoulder muscle activities and structure loads, there needs to be further investigation on how the predicted error from the shoulder rhythm affects the output of the biomechanical model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号