首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   11篇
  2024年   2篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   15篇
  2019年   20篇
  2018年   21篇
  2017年   29篇
  2016年   17篇
  2015年   15篇
  2014年   33篇
  2013年   43篇
  2012年   7篇
  2011年   9篇
  2010年   10篇
  2009年   12篇
  2008年   11篇
  2007年   8篇
  2006年   4篇
  2005年   13篇
  2004年   5篇
  2003年   7篇
  2002年   9篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
301.
《Reproductive biology》2022,22(2):100617
Rab proteins are widely known for their involvement in establishing Golgi apparatus and controlling Golgi trafficking in eukaryotic cells. Specifically, Rab proteins play significant roles in acrosome formation and exocytosis. Furthermore, mechanisms involved in the regulation of Rab proteins during capacitation have been identified. However, there has been no direct evaluation to assess the correlation between Rab proteins and sperm function. Consequently, this study was designed to analyze the correlation between Rab proteins and sperm functions. Individually, we analyzed the sperm motility patterns, motion kinematics, capacitation status, and Rab protein expression levels of sperm samples from 31 boars before and after capacitation. As a result, we discovered that Rab3A, Rab5, Rab11, Rab14, and Rab27A correlated with various sperm motility patterns, motion kinematics before capacitation. Rab3A, Rab5, Rab11, Rab14, and Rab34 correlated with various sperm motility patterns, motion kinematics after capacitation. Moreover, Rab4 and Rab34 were associated with capacitation status before capacitation, and Rab3A, 25, and 27A correlated with capacitation status after capacitation. This is the first study to analyze the correlation between Rab proteins and sperm functions. Collectively, our results indicate that specific sperm motility and kinematics, as well as the structural condition of the sperm head and capacitation status, regulate individual Rab protein. Therefore, we expect that the current findings will be used to identify the etiology of idiopathic male infertility patients and to diagnose male fertility and that Rab proteins will be employed as biomarkers to predict and analyze male fertility.  相似文献   
302.
Cleaner fishes are well known for removing and consuming ectoparasites off other taxa. Observers have noted that cleaners continuously “pick” ectoparasites from the bodies of their respective client organisms, but little is known about the kinematics of cleaning. While a recent study described the jaw morphology of cleaners as having small jaw‐closing muscles and weak bite forces, it is unknown how these traits translate into jaw movements during feeding to capture and remove ectoparasites embedded in their clients. Here, we describe cranial morphology and kinematic patterns of feeding for three species of cleaner wrasses. Through high‐speed videography of cleaner fishes feeding in two experimental treatments, we document prey capture kinematic profiles for Labroides dimidiatus, Larabicus quadrilineatus, and Thalassoma lutescens. Our results indicate that cleaning in labrids may be associated with the ability to perform low‐displacement, fast jaw movements that allow for rapid and multiple gape cycles on individually targeted items. Finally, while the feeding kinematics of cleaners show notable similarities to those of “picker” cyprinodontiforms, we find key differences in the timing of events. In fact, cleaners generally seem to be able to capture prey twice as fast as cyprinodontiforms. We thus suggest that the kinematic patterns exhibited by cleaners are indicative of picking behavior, but that “pickers” may be more kinematically diverse than previously thought. J. Morphol. 276:1377–1391, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
303.
Abusive head trauma (AHT) is a potentially fatal result of child abuse, but the mechanisms by which injury occur are often unclear. To investigate the contention that shaking alone can elicit the injuries observed, effective computational models are necessary. The aim of this study was to develop a probabilistic model describing infant head kinematics in AHT. A deterministic model incorporating an infant’s mechanical properties, subjected to different shaking motions, was developed in OpenSim. A Monte Carlo analysis was used to simulate the range of infant kinematics produced as a result of varying both the mechanical properties and the type of shaking motions. By excluding physically unrealistic shaking motions, worst-case shaking scenarios were simulated and compared to existing injury criteria for a newborn, a 4.5 month-old, and a 12 month-old infant. In none of the three cases were head kinematics observed to exceed previously-estimated subdural haemorrhage injury thresholds. The results of this study provide no biomechanical evidence to demonstrate how shaking by a human alone can cause the injuries observed in AHT, suggesting either that additional factors, such as impact, are required, or that the current estimates of injury thresholds are incorrect.  相似文献   
304.
Abstract

Objective: The way how individual bars of sensorimotor insoles influence the gait kinematics is not fully understood yet. Therefore, this study aimed to explore the effect of three sensorimotor orthotic conditions (the medial calcaneal and retrocapital lateral bars and their combination) on the gait parameters in healthy adults during the stance phase of gait cycle.

Materials and methods: Twenty-six young adults performed 20 gait cycles in each condition using their self-selected cadence and provided standardised shoes with the base-sole and the three types of orthotics. A three-dimensional motion analysis system (8 cameras; 200?Hz) was used and a six-degrees of freedom model was applied. The cadence, the stride length, the first peaks of foot external rotation, eversion and dorsal flexion as well as the first peak of hip adduction were analysed.

Results: Significant differences (p?<?0.05) were found for all parameters between the orthotic conditions, except the cadence. Significant difference in the first peak of hip adduction (p?=?0.008) was found between the dominant and non-dominant leg. There were no significant interactions between the factors of condition and leg dominance (p?>?0.05).

Conclusions: There seems to be overall tendencies in immediate changes in ankle joint kinematics caused by all three sensorimotor orthotic conditions and besides the mechanical principles, also ‘proprioceptive mechanism’ seems to play a role. However, maximum observed average angular change was 2° and some variability in reactions to each orthotic condition exists among the individuals. Therefore, clinical relevance of such changes remains unclear and careful analysis of expected outcomes should be the common part of every orthotic intervention.  相似文献   
305.
Traditionally the FHA is calculated stepwise between data points (sFHA), requiring down sampling to achieve a sufficiently large step size to minimize error. This paper proposes an alternate FHA calculation approach (rFHA), using a unique reference position to reduce error associated with small rotation angles. This study demonstrated error reduction using the rFHA approach relative to the sFHA approach. Furthermore, the rFHA in the femur is defined at each time point providing a continuous representation of joint motion. These characteristics enable the rFHA to quantify small differences in knee joint motion, providing an excellent measure to quantify knee joint stability.  相似文献   
306.
A video tracking system for measuring three-dimensional kinematics of a free-swimming fish is presented. The tracking is accomplished by simultaneously taking images from the ventral view and the lateral view of the fish with two cameras mounted on two computer-controlled and mutually orthogonal translation stages. Compared to the previous system we reported, the time resolution is greatly improved. A koi carp is selected for the experiment. By processing the images caught by the video tracking system, the three-dimensional kinematics of the koi carp during a continuous swimming containing several moderate maneuvers are obtained. In particular, the pitching motion of fish body and the tail motion, including lateral excursion, variation in tail height and torsion, are revealed for burst-and-coast swimming and turning maneuver. The error analysis is also provided for the measurement results.  相似文献   
307.
  相似文献   
308.
309.
《Zoology (Jena, Germany)》2014,117(5):337-348
The maneuverability demonstrated by the weakly electric ghost knifefish (Apteronotus albifrons) is a result of its highly flexible ribbon-like anal fin, which extends nearly three-quarters the length of its body and is composed of approximately 150 individual fin rays. To understand how movement of the anal fin controls locomotion we examined kinematics of the whole fin, as well as selected individual fin rays, during four locomotor behaviors executed by free-swimming ghost knifefish: forward swimming, backward swimming, heave (vertical) motion, and hovering. We used high-speed video (1000 fps) to examine the motion of the entire anal fin and we measured the three-dimensional curvature of four adjacent fin rays in the middle of the fin during each behavior to determine how individual fin rays bend along their length during swimming. Canonical discriminant analysis separated all four behaviors on anal fin kinematic variables and showed that forward and backward swimming behaviors contrasted the most: forward behaviors exhibited a large anterior wavelength and posterior amplitude while during backward locomotion the anal fin exhibited both a large posterior wavelength and anterior amplitude. Heave and hover behaviors were defined by similar kinematic variables; however, for each variable, the mean values for heave motions were generally greater than for hovering. Individual fin rays in the middle of the anal fin curved substantially along their length during swimming, and the magnitude of this curvature was nearly twice the previously measured maximum curvature for ray-finned fish fin rays during locomotion. Fin rays were often curved into the direction of motion, indicating active control of fin ray curvature, and not just passive bending in response to fluid loading.  相似文献   
310.
A microcinematographic (50 f/s) study was performed on motile human spermatozoa. Eighty percent were found to have a linear trajectory and a pseudo-sinusoidal head displacement pattern. Throughout their progression, the spermatozoa periodically rotated on their longitudinal axis at a frequency equal to that of flagellar wave formation. These waves were found always to begin on the same side of the cell and to propagate in the flattened plane of the head until the moment of rotation. At this time the wave had reached a point near the middle of the flagellum. Beyond this point, the flagellum moves out of the plane of the head. Different variables used to characterize the movement of spermatozoa included the velocity of progression, amplitude and velocity of head displacement, frequency of rotation, wave amplitude, and propagation velocity of the flagellar wave. Among these variables, it was the propagation velocity of the wave that was found to be best correlated with the velocity of spermatozoan progression. This flagellar wave exhibited two stages, one of initiation and one of propagation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号