首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   11篇
  2024年   2篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   15篇
  2019年   20篇
  2018年   21篇
  2017年   29篇
  2016年   17篇
  2015年   15篇
  2014年   33篇
  2013年   43篇
  2012年   7篇
  2011年   9篇
  2010年   10篇
  2009年   12篇
  2008年   11篇
  2007年   8篇
  2006年   4篇
  2005年   13篇
  2004年   5篇
  2003年   7篇
  2002年   9篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
111.
The kinematics of tongue projection by terrestrial adult California newts, Taricha torosa (Rathke, 1833), are described based upon high-speed cinematography. Tongue projection results from coupled anterior movements of the ceratohyals and branchial arches. Four distinct periods are defined during a projection sequence: preparation, tongue projection, tongue recovery and mouth closing. Key anatomical correlates of projection are described, with special emphasis on the mobility of the hyoid arch. Adult Taricha (Gray, 1850) have lost the mandibulo-hyoid ligament and reduced additional connective tissues present in larvae. These changes decouple the hyoid arch from mouth opening and release the ceratohyals to participate in a tongue projection system distinct from those of ambystomatids and plethodontids. These phylogenetic differences pose questions about the evolution of tongue projection systems in terrestrial urodeles. Currently available data are consistent with the interpretation that terrestrial urodeles have independently evolved specialized tongue projection systems at least twice: the ceratohyal-stable mode of plethodontids and the ceratohyal-mobile system of newts. In all cases, an essential underlying (= plesiomorphic) feature is the presence of the depressor mandibulae muscle. We regard this pathway for mouth opening as a prerequisite which liberated the hyobranchium for alternative function. Comprehensive studies of the mandibulo-hyoid ligament and depressor mandibulae will be vital to modelling the evolution of specialized tongue projection systems of urodeles.  相似文献   
112.
Abstract. The growth response of etiolated cucumber ( Cucumis sativus L.) hypocotyls to gravitropic stimulation was examined by means of time-lapse photography and high-resolution analysis of surface expansion and curvature. In comparison with video analysis, the technique described here has five- to 20-fold better resolution; moreover, the mathematical fitting method (cubic splines) allows direct estimation of local and integrated curvature. After switching seedlings from a vertical to horizontal position, both upper and lower surfaces of the stem reacted after a lag of about 11 min with a two- to three-fold increase in surface expansion rate on the lower side and a cessation of expansion, or slight compression, on the upper surface. This growth asymmetry was initiated simultancously along the length of the hypocotyl, on both upper and lower surfaces, and did not migrate basipetally from the apex. Later stages in the gravitropic response involved a complex reversal of the growth asymmetry, with the net result being a basipetal migration of the curved region. This secondary growth reversal may reflect oscillatory and or self-regulatory behaviour of growing cells. With some qualifications, the kinetics and pattern of growth response are consistent with a mechanism involving hormone redistribution, although they do not prove such a mechanism. The growth kinetics require a growth mechanism which can be stimulated by two-to three-fold or completely inhibited within a few minutes.  相似文献   
113.
Bayes linear kinematics and Bayes linear Bayes graphical models   总被引:1,自引:0,他引:1  
  相似文献   
114.
The accuracy and reliability of a sonomicrometry system (Sonometrics Corporation, Ontario, Canada) was evaluated for its potential use in measuring 3-D in vivo joint kinematics. Distances between different sets of piezoelectric crystals were measured through a salt solution using ultrasound technology. We evaluated crystal-to-crystal distance under simulated in vivo conditions of changing crystal orientation and displacement magnitude. Crystal-to-crystal distance was also evaluated under changing solution temperature, since the crystals may be used at different temperatures. The 2 mm round and peg crystals were accurate to within 0.5mm for 0 through 180 degrees rotations, but the 2mm round suture loop crystals were only reliable at 0 degrees rotation. The speed of sound through a salt solution (and hence the distance between crystals) versus temperature was fit using a second order polynomial, C=1421.1+3.9808T-3.09x10(-2)T2, with an R2 value of 0.9998. The translational error was less than 0.072 mm for crystal displacements of 0.012, 0.2, 1.0, and 5.0 mm. The system was also accurate under dynamic conditions with translational errors that were less than 0.045 mm under 0.65 Hz motion. These results suggest that the Sonometrics crystals possess attributes (translational accuracy and rotational independence) that could provide the basis for a system capable of measuring joint kinematics.  相似文献   
115.
SimRoot: Modelling and visualization of root systems   总被引:14,自引:1,他引:13  
SimRoot, a geometric simulation model of plant root systems, is described. This model employs a data structure titled the Extensible Tree, which is well suited to the type of data required to model root systems. As implemented on Silicon Graphics workstations, the data structure and visualization code provides for continuous viewing of the simulated root system during growth. SimRoot differs from existing models in the explicit treatment of spatial heterogeneity of physiological processes in the root system, and by inclusion of a kinematic treatment of root axes. Examples are provided of the utility of the model in estimating the fractal geometry of simulated root systems in 1, 2, and 3 dimensional space. We envision continued development of the model to incorporate competition from neighboring root systems, linkage with crop simulation models to simulate root-shoot interactions, explicit treatment of soil heterogeneity, and plasticity of root responses to soil factors such as presence of mycorrhizal associations.  相似文献   
116.
Contrary to expectations there was no transition from a saltatory to a cruise search strategy in foraging behaviour of 7-to 33-day-old barramundi over the period of metamorphosis. Rather, there was a continual change in foraging behaviour, with increasing durations between swimming pauses and increasingly straight swimming paths, implying that hydrodynamic constraints on swimming may be a key determinant of foraging kinematics. It is suggested that the notion of saltatory search as a third, unique foraging strategy needs to be re-evaluated.  相似文献   
117.
The purpose of this work has been to develop a model of electromyographic (EMG) patterns during single-joint movements based on a version of the equilibrium-point hypothesis, a method for experimental reconstruction of the joint compliant characteristics, the dual-strategy hypothesis, and a kinematic model of movement trajectory. EMG patterns are considered emergent properties of hypothetical control patterns that are equally affected by the control signals and peripheral feedback reflecting actual movement trajectory. A computer model generated the EMG patterns based on simulated movement kinematics and hypothetical control signals derived from the reconstructed joint compliant characteristics. The model predictions have been compared to published recordings of movement kinematics and EMG patterns in a variety of movement conditions, including movements over different distances, at different speeds, against different-known inertial loads, and in conditions of possible unexpected decrease in the inertial load. Changes in task parameters within the model led to simulated EMG patterns qualitatively similar to the experimentally recorded EMG patterns. The model's predictive power compares it favourably to the existing models of the EMG patterns.  相似文献   
118.
The introduction of animal‐borne, multisensor tags has opened up many opportunities for ecological research, making previously inaccessible species and behaviors observable. The advancement of tag technology and the increasingly widespread use of bio‐logging tags are leading to large volumes of sometimes extremely detailed data. With the increasing quantity and duration of tag deployments, a set of tools needs to be developed to aid in facilitating and standardizing the analysis of movement sensor data. Here, we developed an observation‐based decision tree method to detect feeding events in data from multisensor movement tags attached to fin whales (Balaenoptera physalus). Fin whales exhibit an energetically costly and kinematically complex foraging behavior called lunge feeding, an intermittent ram filtration mechanism. Using this automated system, we identified feeding lunges in 19 fin whales tagged with multisensor tags, during a total of over 100 h of continuously sampled data. Using movement sensor and hydrophone data, the automated lunge detector correctly identified an average of 92.8% of all lunges, with a false‐positive rate of 9.5%. The strong performance of our automated feeding detector demonstrates an effective, straightforward method of activity identification in animal‐borne movement tag data. Our method employs a detection algorithm that utilizes a hierarchy of simple thresholds based on knowledge of observed features of feeding behavior, a technique that is readily modifiable to fit a variety of species and behaviors. Using automated methods to detect behavioral events in tag records will significantly decrease data analysis time and aid in standardizing analysis methods, crucial objectives with the rapidly increasing quantity and variety of on‐animal tag data. Furthermore, our results have implications for next‐generation tag design, especially long‐term tags that can be outfitted with on‐board processing algorithms that automatically detect kinematic events and transmit ethograms via acoustic or satellite telemetry.  相似文献   
119.
120.
Skin-mounted marker based motion capture systems are widely used in measuring the movement of human joints. Kinematic measurements associated with skin-mounted markers are subject to soft tissue artifacts (STA), since the markers follow skin movement, thus generating errors when used to represent motions of underlying bone segments. We present a novel ultrasound tracking system that is capable of directly measuring tibial and femoral bone surfaces during dynamic motions, and subsequently measuring six-degree-of-freedom (6-DOF) tibiofemoral kinematics. The aim of this study is to quantitatively compare the accuracy of tibiofemoral kinematics estimated by the ultrasound tracking system and by a conventional skin-mounted marker based motion capture system in a cadaveric experimental scenario. Two typical tibiofemoral joint models (spherical and hinge models) were used to derive relevant kinematic outcomes. Intra-cortical bone pins equipped with optical markers were inserted in the tibial and femoral bones to serve as a reference to provide ground truth kinematics. The ultrasound tracking system resulted in lower kinematic errors than the skin-mounted markers (the ultrasound tracking system: maximum root-mean-square (RMS) error 3.44° for rotations and 4.88 mm for translations, skin-mounted markers with the spherical joint model: 6.32° and 6.26 mm, the hinge model: 6.38° and 6.52 mm). Our proposed ultrasound tracking system has the potential of measuring direct bone kinematics, thereby mitigating the influence and propagation of STA. Consequently, this technique could be considered as an alternative method for measuring 6-DOF tibiofemoral kinematics, which may be adopted in gait analysis and clinical practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号