首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7257篇
  免费   762篇
  国内免费   351篇
  2024年   37篇
  2023年   195篇
  2022年   310篇
  2021年   435篇
  2020年   409篇
  2019年   673篇
  2018年   402篇
  2017年   229篇
  2016年   241篇
  2015年   245篇
  2014年   497篇
  2013年   566篇
  2012年   332篇
  2011年   419篇
  2010年   254篇
  2009年   272篇
  2008年   270篇
  2007年   284篇
  2006年   267篇
  2005年   190篇
  2004年   180篇
  2003年   153篇
  2002年   142篇
  2001年   127篇
  2000年   120篇
  1999年   93篇
  1998年   79篇
  1997年   72篇
  1996年   75篇
  1995年   78篇
  1994年   76篇
  1993年   66篇
  1992年   63篇
  1991年   52篇
  1990年   55篇
  1989年   43篇
  1988年   41篇
  1987年   28篇
  1986年   26篇
  1985年   33篇
  1984年   53篇
  1983年   32篇
  1982年   46篇
  1981年   23篇
  1980年   20篇
  1979年   24篇
  1978年   13篇
  1977年   8篇
  1976年   6篇
  1974年   6篇
排序方式: 共有8370条查询结果,搜索用时 15 毫秒
991.
 The combination of CD16/CD30 bispecific monoclonal antibodies (bi-mAb) and unstimulated human resting natural killer (NK) cells can cure about 50% of mice with severe combined immunodeficiency (SCID) bearing subcutaneously growing established Hodgkin’s lymphoma. As interleukin-2 (IL-2) and IL-12 have been shown to increase NK cell activity, we tested the capacity of these cytokines to increase bi-mAb-mediated NK cell cytotoxicity against two types of human tumors (Hodgkin’s disease and colorectal carcinoma). Unstimulated NK cells needed a three- to five-times higher antibody concentration than cytokine-stimulated NK cells to exert similar levels of bi-mAb-mediated cytotoxicity. The augmented tumor cell lysis was achieved with IL-12 at considerably lower concentrations than with IL-2 and was associated with a significantly increased bi-mAb-mediated intracellular Ca2+ mobilization. The efficiency of IL-12 in this setting together with its low toxicity make it the ideal candidate for a combination therapy with NK-cell-activating bi-mAb in human tumors that are resistant to standard treatment. Received: 26 July 1995 / Accepted: 16 November 1995  相似文献   
992.
There are conflicting data about the effect of the epidermal growth factor (EGF) on protein kinase C (PKC) enzyme activity. The aim of our study was to find out which type of phospholipids [phosphatidylinositol 4,5-bisphosphate P14,5P2 or the other phospholipids-phosphatidylcholine (PC) or phosphatidic acid (PA)] could be the source of 1,2-diacylglycerol (1,2-DAG) in PKC activation. In colon carcinoma cells (HT29) we observed a more than 2-fold increase in the PC pool and at the same time decreased tyrosine kinase activity (50%). With increasing incubation time EGF affects the pools of both phosphatidylinositols and other phospholipids parallel with the activation of the tyrosine kinase activity. EGF increases the activity of PKC in the HT29 cell line and PC could be the source of 1,2-DAG which may stimulate PKC activity.  相似文献   
993.
《Epigenetics》2013,8(4):579-586
The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.  相似文献   
994.
995.
Transforming growth factor β (TGFβ) is an immunosuppressive cytokine that contributes to the immunological escape of tumor cells. In a previous study we demonstrated that inhibition of TGFβ production by EMT6 murine mammary tumor cells expressing an antisense TGF-β transgene reduces their tumorigenicity. On the basis of this observation we hypothesized that down-regulation of TGFβ production coupled with interferon γ (IFNγ) stimulation would induce an immune response superior to that generated by either strategy alone. In this study, EMT6 tumor cells expressing antisense TGFβ were transduced with the murine IFNγ gene. Tumor cells expressing either or both transgenes grew more slowly than mock-transduced tumors. Dual-transgene-expressing tumor cells were more immunogenic than tumor cells expressing either transgene alone. Studies in mice depleted of T cell subsets indicated that CD8+ T cells are the primary effectors of the antitumor activity observed. These results suggest that down-regulation of immunosuppression combined with cytokine-mediated immune augmentation is a useful strategy to improve antitumor immunity. Received: 6 October 1998 / Accepted: 15 January 1999  相似文献   
996.
Chemical entities with structural diversity were introduced as candidates targeting adenosine receptor with different clinical activities, containing 3,7-dihydro-1H-purine-2,6-dione, especially adenosine 3 receptors (ADORA3). Our initial approach started with pharmacophore screening of ADORA3 modulators; to choose linagliptin (LIN), approved anti-diabetic drug as Dipeptidyl peptidase-4 inhibitors, to be studied for its modulating effect towards ADORA3. This was followed by generation, purification, analytical method development, and structural elucidation of oxidative degraded product (DEG). Both of LIN and DEG showed inhibitory profile against hepatocellular carcinoma cell lines with induction of apoptosis at G2/M phase with increase in caspase-3 levels, accompanied by a downregulation in gene and protein expression levels of ADORA3 with a subsequent increase in cAMP. Quantitative in vitro assessment of LIN binding affinity against ADORA3 was also performed to exhibit inhibitory profile at Ki of 37.7?nM. In silico molecular modelling showing binding affinity of LIN and DEG towards ADORA3 was conducted.  相似文献   
997.
998.
Long noncoding RNA HOX antisense intergenic RNA (HOTAIR) is overexpressed in many types of cancers, and substantial evidence has suggested a link between cancers and HOTAIR. In the present study, we reviewed the structure and the corresponding biologic function of HOTAIR to clarify its molecular mechanism in cancer progression. HOTAIR promotes proliferation, invasion, and migration, and inhibits apoptosis in cancer cells. HOTAIR also participates in the pathogenesis and progression of cancer by regulating inflammation and immune signaling. These findings suggested that HOTAIR is a novel biomarker in human cancers.  相似文献   
999.
《Developmental cell》2023,58(13):1189-1205.e11
  1. Download : Download high-res image (295KB)
  2. Download : Download full-size image
  相似文献   
1000.
Cellular biomolecular complexes including protein–protein, protein–RNA, and protein–DNA interactions regulate and execute most biological functions. In particular in brain, protein–protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell–cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号