首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
  2020年   1篇
  2015年   2篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2004年   3篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1998年   4篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有47条查询结果,搜索用时 638 毫秒
31.
Differentiation and localization of keratin in the epidermis during embryonic development and up to 3 months posthatching in the Australian water python, Liasis fuscus, was studied by ultrastructural and immunocytochemical methods. Scales arise from dome-like folds in the skin that produce tightly imbricating scales. The dermis of these scales is completely differentiated before any epidermal differentiation begins, with a loose dermis made of mesenchymal cells beneath the differentiating outer scale surface. At this stage (33) the embryo is still unpigmented and two layers of suprabasal cells contain abundant glycogen. At Stage 34 (beginning of pigmentation) the first layers of cells beneath the bilayered periderm (presumptive clear and oberhautchen layers) have not yet formed a shedding complex, within which prehatching shedding takes place. At Stage 35 the shedding complex, consisting of the clear and oberhautchen layers, is discernible. The clear layer contains a fine fibrous network that faces the underlying oberhautchen, where the spinulae initially contain a core of fibrous material and small beta-keratin packets. Differentiation continues at Stage 36 when the beta-layer forms and beta-keratin packets are deposited both on the fibrous core of the oberhautchen and within beta-cells. Mesos cells are produced from the germinal layer but remain undifferentiated. At Stage 37, before hatching, the beta-layer is compact, the mesos layer contains mesos granules, and cells of the alpha-layer are present but are not yet keratinized. They are still only partially differentiated a few hours after hatching, when a new shedding complex is forming underneath. Using antibodies against chick scale beta-keratin resolved at high magnification with immunofluorescent or immunogold conjugates, we offer the first molecular confirmation that in snakes only the oberhautchen component of the shedding complex and the underlying beta cells contain beta-keratin. Initially, there is little immunoreactivity in the small beta-packets of the oberhautchen, but it increases after fusion with the underlying cells to produce the syncytial beta layer. The beta-keratin packets coalesce with the tonofilaments, including those attached to desmosomes, which rapidly disappear in both oberhautchen and beta-cells as differentiation progresses. The labeling is low to absent in forming mesos-cells beneath the beta-layer. This study further supports the hypothesis that the shedding complex in lepidosaurian reptiles evolved after there was a segregation between alpha-keratogenic cells from beta-keratogenic cells during epidermal renewal.  相似文献   
32.
Five different type I keratins from a teleost fish, the rainbow trout Oncorhynchus mykiss, have been sequenced by cDNA cloning and identified at the protein level by peptide mass mapping using MALDI-MS. This showed that the entire range of type I keratins detected biochemically in this fish has now been sequenced. Three of the keratins are expressed in the epidermis (subtype Ie), whereas the other two occur in simple epithelia and mesenchymal cells (subtype Is). Among the Is keratins is an ortholog of human K18; the second Is polypeptide is clearly distinct from K18. We raised a new monoclonal antibody (F1F2, subclass IgG1) that specifically recognizes trout Is keratins, with negative reactions on zebrafish. A phylogenetic tree has been constructed from a multiple alignment of the rod domains of the new sequences together with type I sequences from other vertebrates such as shark, zebrafish, and human; a recently sequenced lamprey Is keratin was applied as outgroup. This tree shows one branch defining the K18 orthologs and a second branch containing all other type I keratins (mostly subtype Ie). Within this second branch, the teleost keratins form a separate, highly bootstrap-supported twig. This tree leaves little doubt that the teleost Ie keratins diversified independently from the mammalian Ie keratins.  相似文献   
33.
Reconstituted human oral and esophageal mucosa in culture   总被引:14,自引:0,他引:14  
Summary We have successfully established monolayer and organotypic culture techniques for growing human oral and esophageal epithelial cells. Cells in monolayer culture were grown in serum-free medium, modified from techniques previously reported by our group. The organotypic cultures were grown in a defined medium supplemented with 10% fetal calf serum. Oral and esophageal cells were maintained in keratinocyte basal medium with pituitary extract and other supplements, and 0.05 mM calcium for 7–9 and 9–11 passages, respectively. Both cell types had similar morphology by phase contrast microscopy. When confluent, the cells were predominantly small, basaloid, and uniform and interspersed with larger, differentiated cells. By immunohistochemistry, both cell types in monolayer were positive to AE1, AE3, and 34BE12 antibodies to keratins of stratified epithelia. Oral epithelial cells in monolayer also were positive to 35BH11, representative of simple epithelial keratins, while esophageal cells were not. The esophageal cells were focally positive to K13, while the oral cells were negative. Both were negative for K19. When comparing monolayer to organotypic cultures and to in vivo specimens, there was a significant difference in the expression of keratins. Using organotypic cultures, AE1, AE3, and 34BE12 were strongly positive in both oral and esophageal cells, similar to in vivo tissues. In contrast to monolayers, both were also focally positive for K19. Esophageal cells were strongly positive for K13, while the oral cells were middly but uniformly positive. Both were negative for keratins of simple epithelia. These two cell culture techniques offer unique opportunities to study the pathobiology, including carcinogenesis, of stable cell systems from the oral and esophageal epithelia.  相似文献   
34.
Dividing populations of stratified and simple epithelial tissues express keratins 5 and 14, and keratins 8 and 18, respectively. It has been suggested that these keratins form a mechanical framework important to cellular integrity, since their absence gives rise to a blistering skin disorder in neonatal epidermis, and hemorrhaging within the embryonic liver. An unresolved fundamental issue is whether different keratins perform unique functions in epithelia. We now address this question using transgenic technology to express a K16-14 hybrid epidermal keratin transgene and a K18 simple epithelial keratin transgene in the epidermis of mice null for K14. Under conditions where the hybrid epidermal keratin restored a wild-type phenotype to newborn epidermis, K18 partially but not fully rescued. The explanation does not appear to reside in an inability of K18 to form 10-nm filaments with K5, which it does in vitro and in vivo. Rather, it appears that the keratin network formed between K5 and K18 is deficient in withstanding mechanical stress, leading to perturbations in the keratin network in regions of the skin that are subjected either to natural or to mechanically induced trauma. Taken together, these findings suggest that the loss of a type I epidermal keratin cannot be fully compensated by its counterpart of simple epithelial cells, and that in vivo, all keratins are not equivalent.  相似文献   
35.
The examination of human hair keratin to obtain genetic information, which may be useful also in forensic sciences, has been carried out with the use of isoelectrophoretic procedure obtaining considerable evidence for the existence of specific-species patterns. In this paper the keratins extracted from hairs of 280 subjects belonging to Sardinian people (113 males, 167 females, aged from 1 to 89, belonging to 52 families) were analyzed using IEF in thin-layer polyacrylamide gel (0.5 mm) in the pH range 2.5–7.0, followed by the silver staining method. Number, position and colour of the bands were the same in all the analyzed samples but a large individual variability was revealed for the relative intensity of some bands. Differences for a long time storage were not revealed as well hair's sample as protein extract: Neither were differences in the number and position of the bands analyzing samples of hair from several sites of the head of the same individual revealed. The results obtained are a useful indication to continue this research considering the numerous fields of application of this analysis system.  相似文献   
36.
The disulfide bond network within the cortex of mammalian hair has a critical influence on the physical and mechanical characteristics of the fiber. The location, pattern, and accessibility of free and crosslinked cysteines underpin the properties of this network, but have been very difficult to map and understand, because traditional protein extraction techniques require the disruption of these disulfide bonds. Cysteine accessibility in both trichocyte keratins and keratin associated proteins (KAPs) of wool was investigated using staged labeling, where reductants and chaotropic agents were used to expose cysteines in a stepwise fashion according to their accessibility. Cysteines thus exposed were labeled with distinguishable alkylation agents. Proteomic profiling was used to map peptide modifications and thereby explore the role of KAPs in crosslinking keratins. Labeled cysteines from KAPs were detected when wool was extracted with reductant only. Among them were sequences from the end domains of KAPs, indicating that those cysteines were easily accessible in the fiber and could be involved in forming interdisulfide linkages with keratins or with other KAPs. Some of the identified peptides were from the rod domains of Types I and II keratins, with their cysteines positioned on the exposed surface of the α‐helix. Peptides were also identified from keratin head and tail domains, demonstrating that they are not buried within the filament structure and, hence, have a possible role in forming disulfide linkages. From this study, a deeper understanding of the accessibility and potential reactivity of cysteine residues in the wool fiber cortex was obtained. Proteins 2015; 83:224–234. © 2014 Wiley Periodicals, Inc.  相似文献   
37.
In order to determine the cause of the evident degradation of feathers from ingested prey in pellets regurgitated by raptors, in vitro digestions of whole feather barbs by pellet extracts, pepsin or trypsin were carried out. The material was analysed by using biochemical and electron microscopic methods. The results show that the changes in the feathers which occur in the stomach of the Falconidae do not arise from digestion of keratin but from hydrolysis of protein acting as a cement matter in the feather.  相似文献   
38.
Lizard scales are composed of alpha-(cyto-) keratins and beta-keratins. The characterization of the molecular weight and isoelectric point (pI) of alpha- and beta-keratins of lizard epidermis (Podarcis sicula) has been done by using two-dimensional electrophoresis, immunoblotting, and immunocytochemistry. Antibodies against cytokeratins, against a chicken scale beta-keratin or against lizard beta-keratin bands of 15-16 kDa, have been used to recognize alpha- and beta-keratins. Acid and basic cytokeratins of 42-67 kDa show a pI from 5.0 to 8.9. This indicates the presence of specific keratins for the formation of the stratum corneum. Main protein spots of beta-keratin at 15-17 kDa, and pI at 8.5, 8.2, and 6.7, and one spot at 10 kDa and pI at 7.3 were recognized. Therefore, beta-keratins are mainly basic proteins, and are used for the formation of the hard corneous layer of the epidermis. Ultrastructural immunocytochemistry confirms that beta-keratin is packed into large and dense bundles of beta-keratin cells of lizard epidermis. The use of a probe against a lizard beta-keratin in situ-hybridization studies confirms that the mRNA for beta-keratins is present in beta-cells and is localized around or even associated with beta-keratin filaments.  相似文献   
39.
We present here the nucleotide sequence of a 1700 bp-long cDNA encoding human epidermal keratin No. 10 (56.5 kDa). cDNA clones of the acidic keratin family were first isolated from a pBR322 human epidermal cDNA library by hybridization with a probe coding for keratin No. 14. Differential hybridization using total cDNA probes prepared from poly(A)+ RNA extracted either from epidermis (which contains keratin No. 10) and from squamous carcinoma or hepatoma cell lines (which do not express keratin No. 10) made possible the selection of clones potentially coding for keratin No. 10. The 1.7 kb sequence exhibits the characteristic features of an acidic keratin with a constant central rod domain and C-terminal variable structures. Moreover, the sequence shows extensive homologies with the cDNA of murine keratin No. 10.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号